
Behavior Research Methods
https://doi.org/10.3758/s13428-020-01386-4

ADOpy: a python package for adaptive design optimization

Jaeyeong Yang1 ·Mark A. Pitt2 ·Woo-Young Ahn1 · Jay I. Myung2

© The Psychonomic Society, Inc. 2020

Abstract
Experimental design is fundamental to research, but formal methods to identify good designs are lacking. Advances in
Bayesian statistics and machine learning offer algorithm-based ways to identify good experimental designs. Adaptive design
optimization (ADO; Cavagnaro, Myung, Pitt, & Kujala, 2010; Myung, Cavagnaro, & Pitt, 2013) is one such method. It
works by maximizing the informativeness and efficiency of data collection, thereby improving inference. ADO is a general-
purpose method for conducting adaptive experiments on the fly and can lead to rapid accumulation of information about the
phenomenon of interest with the fewest number of trials. The nontrivial technical skills required to use ADO have been a
barrier to its wider adoption. To increase its accessibility to experimentalists at large, we introduce an open-source Python
package, ADOpy, that implements ADO for optimizing experimental design. The package, available on GitHub, is written
using high-level modular-based commands such that users do not have to understand the computational details of the ADO
algorithm. In this paper, we first provide a tutorial introduction to ADOpy and ADO itself, and then illustrate its use in three
walk-through examples: psychometric function estimation, delay discounting, and risky choice. Simulation data are also
provided to demonstrate how ADO designs compare with other designs (random, staircase).

Keywords Cognitive modeling · Bayesian adaptive experimentation · Optimal experimental design ·
Psychometric function estimation · Delay discounting · Risky choice

Introduction

A main goal of psychological research is to gain knowledge
about brain and behavior. Scientific discovery is guided
in part by statistical inference, and the strength of any
inference depends on the quality of the data collected.
Because human data always contain various types of
noise, researchers need to design experiments so that the
signal of interest (experimental manipulations) is amplified
while unintended influences from uncontrolled variables
(noise) are still present. The design space, the stimulus set

� Woo-Young Ahn
wahn55@snu.ac.kr

� Jay I. Myung
myung.1@osu.edu

1 Department of Psychology, Seoul National University,
Seoul, Korea

2 Department of Psychology, Ohio State University,
Columbus, OH, USA

that arises from decisions about the independent variable
(number of variables, number of levels of each variable) is
critically important for creating a high-signal experiment.

A similarly important consideration is the stimulus
presentation schedule during the experiment. This issue
is often guided by two competing goals: efficiency and
precision. How much data must be collected to be confident
that differences between conditions could be found? This
question is similar to that asked when performing a
power analysis, but is focused on the performance of the
participant during the experiment itself. Too few trials yield
poor precision (low signal-to-noise ratio); there are simply
not enough data to make an inference, for or against a
prediction, with confidence. Adding more trials can increase
precision along with practice effects. However, it may not
be efficient to add too many trials, especially with a clinical
population where time is really of the essence and when
participants can easily get fatigued or bored. What then
is the optimal number of trials that will provide the most
precise performance estimates? A partial answer lies in
recognizing that not all stimuli are equally informative. By
optimizing stimulus selection in the design space, efficiency
and precision can be balanced.

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-020-01386-4&domain=pdf
mailto: wahn55@snu.ac.kr
mailto: myung.1@osu.edu

Behav Res

Methods of optimizing efficiency and precision have
been developed for some experimental paradigms. The most
widely used one is the staircase procedure for estimating
a threshold (Cornsweet, 1962; Feeny et al., 1966; Rose
et al., 1970), such as when measuring hearing or visual
acuity. Stimuli differ along a one-dimensional continuum
(intensity). The procedure operates by a simple heuristic
rule, of which there are a handful of variants: The stimulus
to present on one trial is determined by the response on
the previous trial. Intensity is increased if the stimulus
was not detected, decreased if it was. The experiment is
stopped after a given number of reversals in direction has
been observed. The staircase method is efficient because
the general region of the threshold is identified after a
relatively small number of trials, after which the remaining
trials concentrate on obtaining a precise threshold estimate.
Its ease of implementation and generally good results have
made it a popular method across many fields in psychology.

Formal approaches to achieving these same ends (good
efficiency and precision) have also been developed. They
originated in the fields of optimal experimental design in
statistics (Lindley, 1956; Atkinson & Donev, 1992) and
active learning in machine learning (Cohn et al., 1994;
Settles, 2009). In psychology, the application of these
methods began in visual psychophysics (e.g., Kontsevich
& Tyler, 1999), but has since expanded into other content
areas (neuroscience, memory, decision making) and beyond.
Common among them is the use of a Bayesian decision
theoretic framework. The approach is intended to improve
upon the staircase method by using not only the participant’s
responses to guide the choice of the stimulus on the next
trial, but also a mathematical model that is assumed to
describe the psychological process of interest (discussed
more fully below). The model-based algorithm integrates
information from both sources (model predictions and
participants’ responses) to present what it identifies as the
stimulus that should be most informative on the next trial.

The method developed in our lab, adaptive design
optimization (ADO), has been shown to be efficient and
precise. For example, in visual psychophysics, contrast
sensitivity functions (i.e., thresholds) can be estimated so
precisely in 50 trials that small changes in luminance
(brightness) can be differentiated (Gu et al., 2016; Hou
et al., 2016). In delayed discounting, precise estimation of
the k parameter of the hyperbolic model (a measure of
impulsivity) can be obtained in fewer than 20 trials, and the
estimate is 3-5 times more precise than the staircase method
(Ahn et al., 2019). Other applications of ADO can be found
in several areas of psychology such as retention memory
(Cavagnaro et al. 2010, 2011), risky choice decision
(Cavagnaro et al., 2013a, b; Aranovich et al., 2017), and in
neuroscience (Lewi et al. 2009; DiMattina & Zhang, 2008,
2011; Lorenz et al., 2016).

The technical expertise required to implement the ADO
algorithm is nontrivial, posing a hurdle to its wider use. In
this paper, we introduce an open-source Python package,
dubbed ADOpy, that is intended to make the technology
available to researchers who have limited background
in Bayesian statistics or cognitive modeling (e.g., the
hBayesDM package, Ahn et al., 2017). Only a working
knowledge of Python programming is assumed.1 For an
in-depth, comprehensive treatment of Bayesian cognitive
modeling, the reader is directed to the following excellent
sources written for psychologists (Lee & Wagenmakers,
2014; Farrell & Lewandowsky, 2018; Vandekerckhove
et al., 2018). ADO is implemented in three two-choice tasks:
psychometric function estimation, the delay discounting
task (Green & Myerson, 2004) and the choice under risk
and ambiguity (CRA) task (Levy et al., 2010). ADOpy
easily interfaces with Python code running one of these
tasks, requiring only a few definitions and one function call.
Most model parameters have default values, but a simulation
mode is provided for users to assess the consequences of
changing parameter values. As we discuss below, this is a
useful step that we encourage researchers to use to ensure
the algorithm is optimized for their test situation.

The algorithm underlying ADO is illustrated in Fig. 1. It
consists of three steps that are executed on each trial of an
experiment: (1) design optimization; (2) experimentation;
and (3) Bayesian updating. In the first step, we identify the
optimal design (e.g., stimulus) of all possible designs, the
choice of which is intended to provide the most information
about the quantity to be inferred (e.g., model parameters).
In Step 2, an experiment is carried out with the chosen
experimental design. In Step 3, the participant’s response is
used to update the belief about the informativeness of all
designs. This revised (updated) knowledge is used to repeat
the ADO cycle on the next trial of the experiment.

The following section provides a short technical intro-
duction to the ADO algorithm. Subsequent sections intro-
duce the package and demonstrate how to use ADOpy for
optimizing experimental design with walk-through exam-
ples from three domains: psychometric function estimation,
delay discounting, and risky choice. Readers who prefer
to concentrate on the practical application of the algorithm
rather than its technicalities should skip Section “Adap-
tive design optimization (ADO)” and jump directly to
Section “ADOpy”.

Adaptive design optimization (ADO)

ADO follows in the tradition of optimal experimental
design in statistics (Lindley, 1956; Atkinson & Donev,

1ADOpy is available at https://github.com/adopy/adopy.

https://github.com/adopy/adopy

Behav Res

Fig. 1 Schematic diagram illustrating the three iterative steps of adaptive design optimization (ADO)

1992) and active learning in machine learning (Cohn
et al., 1994; Settles, 2009). ADO is a model-based
approach to optimization in the sense that it requires
a quantitative (statistical, cognitive) model that predicts
experimental outcomes based on the model’s parameters
and design variables (e.g., experimentally controllable
independent variables). Statistically speaking, a model is
defined in terms of the probability density function (PDF),2

a parametric family of probability distributions indexed by
its parameters, denoted by p(y|θ, d), where y represents a
vector of experimental outcomes, θ is the parameter vector,
and finally, d is the vector of design variables.

ADO is formulated in a Bayesian framework of optimal
experimental design (Chaloner & Verdinelli, 1995; Müller,
1999; Müller et al., 2004; Amzal et al., 2006). On each
ADO trial, we seek to identify the optimal design d∗ that
maximizes some real-valued function U(d) that represents
the utility or usefulness of design d . Formally, the “global”
utility function U(d) (Chaloner & Verdinelli, 1995) is
defined as:

U(d) =
∫∫

u(d, θ, y) p(y|θ, d) p(θ) dy dθ, (1)

where p(θ) is the prior distribution. In the above equation,
u(d, θ, y), called the “local” utility function, measures the
utility of a hypothetical experiment carried out with design
d when the model outputs an outcome y given the parameter
value θ . Note that the global utility U(d), which is a
function of design d , represents the mean of the local
utility u(d, θ, y) calculated across all possible outcomes

2The probability density function (PDF) for a continuous response
variable, or the probability mass function (PMF) for a discrete response
variable, refers to the probability of observing a response outcome
given a fixed parameter value and is therefore a function defined over
the set of possible outcomes.

and parameter values, weighted by the likelihood function3

p(y|θ, d) and the prior p(θ).
As is typically done in ADO, the ADOpy package adopts

an information theoretic framework in which the optimal
design is defined as the one that is maximally informative
about the unknown quantity of interest, i.e., the values of the
parameter θ in our case. Specifically, by using Shannon’s
entropy, a particular local utility function is defined as
u(d, θ, y) = log p(θ |y,d)

p(θ)
. The global utility function in

Eq. 1 becomes the mutual information between the outcome
random variable Y (d) and the parameter random variable Θ

conditional on design d (Cover & Thomas, 1991):

U(d) = H(Y(d)) − H(Y(d)|Θ), (2)

where H(Y(d)) is the marginal entropy (i.e., overall
uncertainty) of the outcome event and H(Y(d)|Θ) is
the conditional entropy of the outcome event given the
knowledge of the parameter θ .4 Accordingly, the optimal
design d∗ that maximizes the mutual information in Eq. 2
is the one that maximally reduces the uncertainty about the
parameters of interest.

Once the optimal design d∗ is identified, we then
conduct an actual experiment on the current trial with
the optimal design and observe an experimental outcome
yobs . The prior distribution p(θ) is updated via Bayes
rule with this new observation to obtain the posterior
distribution p(θ |yobs), which in turn becomes the new prior
on the next trial, i.e., by replacing p(θ) with p(θ |yobs)

3The likelihood function represents the “likeliness” of the parameter
given a fixed specific response outcome as a function over the set
of possible parameter values. Specifically, the likelihood function is
obtained from the same equation as the probability density function
(PDF) by reversing the roles of y and θ .
4See Step 1 in Fig. 2 for specific equations defining the entropy
measures in Eq. 2.

Behav Res

Fig. 2 Three steps of a grid-based ADO algorithm with an initial step for pre-computation

in Eq. 1. This “trilogy scheme” of design optimization,
experimentation, and Bayesian updating, depicted in Fig. 1,
is applied successively on each ADO trial until the end of
the experiment.

Finding the optimal design d∗ that maximizes U(d) in
Eq. 1 is computationally non-trivial as it involves solving
a high dimensional maximization and integration problem.
As such, obtaining an analytic form solution for the problem
is generally not possible; instead, approximate solutions
must be sought numerically. For this purpose, the ADOpy
package implements a grid-based algorithm for both the
design optimization and Bayesian updating steps in Fig. 1.
Implementation of the algorithm requires the discretization
of both the continuous parameter and design spaces. That
is, each element of the parameter vector θ and the design
vector d is represented as a one-dimensional discretized line
with a finite number of grid points. Further, the local utility
function u(d, θ, y), the likelihood function p(y|θ, d), and
the prior p(θ) are all represented numerically as vectors
defined on the grid points.

Figure 2 describes the grid-based ADO algorithm
implemented in the ADOpy package in four steps, which
is adapted from Bayesian adaptive estimation algorithms
in psychophysics (Kontsevich & Tyler, 1999; Kujala &
Lukka, 2006; Lesmes et al., 2006). In Step 0, which is
performed once at the start of the experiment, the algorithm
first creates and stores in memory a look-up table of
various functions over all possible (discretized) outcomes
and parameter values. This involves pre-computation of the
likelihood function p(y|θ, d) and the entropy H(Y(d)|θ)

for all possible values for response y, parameter θ , and

design d . Also, the prior knowledge for model parameter
p0(θ) is initialized based on researchers’ beliefs, typically
from a uniform distribution. The use of pre-computed look-
up tables makes it possible to run ADO-based experiments
on the fly without additional computational time on each
trial. The three steps of the ADO trilogy scheme illustrated
in Fig. 1 are then executed.

In brief, users can find an optimal experimental design
with ADO that maximizes information gain. To use it
efficiently in an experiment, grid-based ADO discretizes
the possible design and parameter spaces and generates pre-
computed look-up tables. For a more thorough description
of the algorithm, see Cavagnaro et al. (2010) and Myung
et al. (2013).

ADOpy

In this section, we provide a step-by-step guide on how
to use the ADOpy package to compute optimal designs
adaptively with walk-through examples. It is assumed that
readers are familiar with Python programming and have
written experiment scripts using Python or some other
language. For further information, the detailed guide on how
to use the ADOpy package is also provided on the official
documentation (https://docs.adopy.org).

Overview

ADOpy is designed in a modular fashion to ensure
functional flexibility and code readability. At the core of

https://docs.adopy.org

Behav Res

the package are three classes: Task, Model, and Engine.
The Task class is used to define design variables of a
task. The Model class is used to define model parameters
and the probability density (or mass) function that specifies
the probability of responses given parameters and designs
(e.g., Myung, 2003; Farrell and Lewandowsky, 2018). The
Engine class is used for implementing design optimization
and Bayesian updating.

The general workflow of these classes is illustrated in
Fig. 3. After loading the three classes, users should initialize
each object, with the engine requiring the most parameters.
The for-loop is an experiment itself divided into three
parts: 1) obtain the design (stimulus) for the next trials and
present the stimulus to the participant; 2) obtain a response
from the participant, which would come from a keyboard
or mouse, as defined by the experimenter; 3) update the
ADO engine using the participant response together with the
design.

ADOpy implements a grid-search algorithm in which the
design space and parameter space are discretized as sets of
grid points. How to set grid points and the range of each grid
dimension is described in detail in Section “Basic usage”.

Owing to the modular structure of ADOpy, users do
not have to concern themselves with how the Engine
works, other than defining the Task and the Model
classes. Consequently, ADOpy dramatically reduces the
amount of coding, and the likelihood of coding errors, when
implementing ADO.

Prerequisites

Before installing ADOpy, users should install Python
(version 3.5 or higher). Using the Anaconda distribution
(https://www.anaconda.com) is recommended because it
ensures compatibility among dependencies.

ADOpy depends on several core packages for scientific
computing: NumPy, SciPy, and Pandas. Since ADOpy uses
high dimensional matrices to compute optimal designs, it
is strongly recommended to install linear algebra libraries
(e.g., Intel Math Kernel Library, LAPACK, BLAS) to make
the operations fast. If the Anaconda distribution is used, the
Intel Math Kernel Library will be used as the default.

Installation

The ADOpy package is available from the Python Package
Index (PyPI) and GitHub. The easiest way to install ADOpy
is from PyPI using pip as follows:

pip install adopy

To install the developmental version, users can install it
from GitHub. However, it can be unstable, so use it with
caution.

git clone https://github.com/adopy/adopy.git
cd adopy
git checkout develop
pip install .

To check that ADOpy was installed successfully, run the
following code at the Python prompt. As of now, the latest
version is 0.3.1.

Module structure

Inside the ADOpy package, the two most important modules
are adopy.base and adopy.tasks. The module
adopy.base contains three basic classes: Task, Model,
and Engine (see more details in Section “Basic usage”).
Using these classes, users can apply the ADO procedure
into their tasks and models. For convenience, users can load
these classes directly from adopy itself as follows:

Fig. 3 ADOpy workflow. Each function call above is described in
greater detail in Section “Basic usage”. Note that ADOpy itself is soley
the engine for stimulus selection and does not include code to conduct

an experiment (e.g., present the stimuli or collect responses, save the
data); the user must program these steps

https://www.anaconda.com

Behav Res

Load three classes from ADOpy
from adopy import Task, Model, Engine

The other module, adopy.tasks, contains three
pre-implemented tasks and models (see Section “Tasks
and Models implemented in ADOpy” and Table 1).
The three tasks are psychometric function estima-
tion (adopy.tasks.psi), the delay discounting task
(adopy.tasks.ddt), and the choice under risk and
ambiguity task (adopy.tasks.cra).

Basic usage

Implementation of ADOpy requires execution of the four
steps shown in Fig. 3, the most important and complex of
which is the Initialization step, in which ADOpy objects
to be used in the subsequent steps are defined. The
Initialization step itself comprises four sub-steps: defining
a task, defining a model, defining grids, and initializing an
ADO engine. In this section, we explain the coding involved
in each of these sub-steps using the delay discounting task
as an example.

Defining a task The Task class is for defining the
experimental task. Using the Task class, a task object is
initialized by specifying three types of information: the
name of the task (name), the design variables (designs),
and the response variable (responses).

Fig. 4 Illustrated scheme of the delay discounting (DD) task. On each
trial, a participant is asked to choose between two options, a smaller-
sooner (SS) option on the left and a larger-later (LL) option on the
right. The dotted lines and arrows indicate the design variables of the
task to be optimized

Delay discounting (DD; the task is depicted in Fig. 4),
refers to the well-established finding that animals, including
humans, tend to discount the value of a delayed reward such
that the discount progressively increases as a function of
the receipt delay (e.g., Green & Myerson, 2004; Vincent,
2016). The delay discounting task has been widely used
to assess individual differences in temporal impulsivity and
is a strong candidate endophenotype for addiction (Green
& Myerson, 2004; Bickel, 2015). In a typical DD task, a
participant is asked to indicate his/her preference between
two options, a smaller-sooner (SS) option (e.g., 8 dollars
now) and a larger-later (LL) option (e.g., 50 dollars in
a month). Let us use a formal expression (RSS, tSS) to
denote the SS option where RSS represents the reward
amount, and tSS represents the receipt delay. Similarly,
(RLL, tLL) denotes the LL option. By definition, the

Table 1 Tasks and models implemented in the ADOpy package (alphabetized order)

Module Task Model Engine

Class Designs Class Model name Parameters

Choice under risk & ambiguity
(adopy.tasks.cra)

TaskCRA p var, a var,
r var, r fix

ModelLinear Linear alpha, beta, gamma EngineCRA

ModelExp Exponential
Delay discounting
(adopy.tasks.dd)

TaskDD t ss,
t ll,
r ss,
r ll

ModelExp Exponential tau, r EngineDD

ModelHyp Hyperbolic tau, k

ModelHPB Hyperboloid tau, k, s

ModelCOS Constant Sensitivity tau, r, s

ModelQH Quasi-Hyperbolic tau, beta, delta

ModelDE Double Exponential tau, omega, r, s

Psychometric
function
estimation
(adopy.tasks.psi)

Task2AFC stimulus ModelLogistic Logistic function guess rate,
lapse rate,
threshold,
slope

EnginePsi

ModelWeibull Log-Weibull CDF

ModelProbit Normal CDF

For detailed information, see the documentation website for ADOpy (https://github.com/adopy/adopy)

https://github.com/adopy/adopy

Behav Res

following constraints are imposed on the reward amounts
and the delay times: RSS < RLL and tSS < tLL for a given
pair of options. The choice response is recorded as either
y = 1 (LL option) or y = 0 (SS option).

The DD task therefore has four design variables, i.e.,
d = (tSS, tLL, RSS, RLL), with a binary response on each
trial (i.e., 0 or 1). As such, we define a Task object for the
DD task as follows:

from adopy import Task

task = Task(
name=’Delay discounting task’,
designs=[’t_ss’, ’t_ll’, ’r_ss’, ’r_ll’],
responses=[0, 1])

where the four symbols (t ss, t ll, r ss, r ll) denote
short notations for the respective design variables (tSS ,
tLL, RSS , RLL). Note that designs argument should be
specified as labels for design variables, while responses
argument should be given as possible values of responses.

With the task object defined, the information passed
into the object can be accessed by task.name,
task.designs, and task.responses, respectively:

task.name
’Delay discounting task’
task.designs
[’t_ss’, ’t_ll’, ’r_ss’, ’r_ll’]
task.responses
[0, 1]

Defining a model Before making a model object, users
should define a function that describes how to compute
the response probability given design variables and model
parameters. For example, the hyperbolic model for the
delay discounting task is defined with the following set of
equations:

D(t) = 1

1 + kt

VLL = RLL · D(tLL)

VSS = RSS · D(tSS)

P (LL over SS) = 1

1 + exp[−τ(VLL − VSS)] (3)

where P(LL over SS) denotes the probability of choosing
the LL option over the SS option, and VLL and VSS

denote subjective value estimates for the LL and SS
options respectively. There are two model parameters: k

represents the discounting rate and τ represents the inverse
temperature that measures the consistency or stability in
choice responses. For further details about the above model,
the reader is referred to Section “Delay discounting task”.

Based on the above model, the following Python snippet
computes the response probability:

import numpy as np

def compute_prob(t_ss, t_ll, r_ss, r_ll,
k, tau):

v_ss = r_ss * (1 / (1 + t_ss * k))
v_ll = r_ll * (1 / (1 + t_ll * k))
p = 1 / np.exp(-tau * (v_ll - v_ss))
return p

The argument names for design variables in the above
function definition must be the same as those used in the
task definition (i.e., t ss, r ss, t ll, r ll). We also
recommend using NumPy functions for the definition, given
that it can vectorize basic mathematical operations.

Specification of a mathematical model is performed
by the Model class. Four arguments are required: the
name of the model (name), a task object related to the
model (task), labels of model parameters (params),
and the response probability of the model (func),
which in the current case is defined by the function
compute likelihood(). In terms of these arguments,
a model object is defined as below:

from adopy import Model

model = Model(
name=’Hyperbolic model’,
task=task,
params=[’k’, ’tau’],
func=compute_prob)

As in the task object, the information passed into
the model object can be accessed by model.name,
model.task, and model.params:

model.name
’Hyperbolic model’
model.task
Task(’Delay discounting task’, ...)
model.params
[’k’, ’tau’]

Further, users can run the response probability
passed into the model object by model.compute(),
which uses the same arguments that are used for the
compute likelihood() function, as follows:
model.compute(t_ss, t_ll, r_ss, r_ll, k, tau)

Defining grids As mentioned earlier, ADOpy implements
a grid-based algorithm that requires the discretization of
both parameter and design spaces. As such, before running
ADO using model and task objects, users must specify the
grid resolution to be used for the design optimization and
Bayesian updating steps in Fig. 1. This amounts to defining
the number and spacing of grid points on each dimension of

Behav Res

the design and parameter variables. The grid passed to the
ADO engine determines (1) the range of values in design
variables that the ADO engine can suggest and (2) the range
of the model parameters over which the computations will
be carried out.

It is important to note that the number of grid points
affects the efficiency and reliability of parameter estimation.
The more sparse the grid, the more efficient but less
precise parameter estimation will be; the denser the grid,
the more precise but less efficient parameter estimation will
be. Specifically, sparse grids can lead to poorly estimated
model parameters whereas dense grids can require large
amounts of memory and long computing times. Thus, before
conducting an ADO-based experiment with participants, it
is worth identifying the optimal grid resolution for each
parameter/design variable. A simulation mode provided
with ADOpy can help facilitate this process.

A grid object for ADOpy can be defined as a Python
dictionary object by using the name of a variable as its
key and a list of the grid points as its values. If a design
variable or model parameter needs to be fixed to a single
value, users would simply assign a single grid point for
the variable. Also, to restrict the values of a variable, users
can manually make a matrix in which each column vector
indicates possible values for the variable, then pass it as a
value with a key of the column labels. Example codes below
illustrate various ways of defining the grids for two design
variables, t ss and t ll:

A grid object for two design variables.
grid_design = {

’t_ss’: [1, 2, 3],
’t_ll’: [1, 2, 3]

}

Variables can be fixed to a constant.
grid_design = {

’t_ss’: [0],
’t_ll’: [1, 2, 3]

}

Constrain the grid by using a joint matrix.
E.g., to use pairs such that t_ss <= t_ll
t_joint = []
for t_ss in [1, 2, 3]:

for t_ll in [1, 2, 3]:
if t_ss <= t_ll:
t_joint.append([t_ss, t_ll])

t_joint:
[[1, 1], [1, 2], [1, 3],
[2, 2], [2, 3], [3, 3]]
grid_design = {(’t_ss’, ’t_ll’): t_joint}

In much the same way, users can also define a grid
for model parameters. For example, a grid for the two
parameters of the delay discounting model in Eq. 3, k and
tau, can be defined as:

grid_param = {
’k’: np.logspace(-5, 0, 20),
’tau’: np.linspace(0, 5, 20)

}

The reader is directed to Appendix A for more examples
for defining grids for the delay discounting task.

Initializing an ADO engine With the defined Model and
Task classes and grids for design and parameter variables,
users are now ready to load an Engine for ADO
computation. It requires four arguments: (1) the task object
(task); (2) the model object (model); (3) a grid for
design variables (grid design); and (4) a grid for model
parameters (grid param):

from adopy import Engine

engine = Engine(model=model,
task=task,
grid_design=grid_design,
grid_param=grid_param)

When initializing an instance of Engine, it pre-
computes response probabilities and mutual information for
a given sets of designs and parameters. This step may take a
while, with linearly increasing computing time in proportion
to the number and resolution of the grids. For the three
examples provided here, compute time is usually less than
two seconds on an average Mac or Windows computer.

Once the engine object is in place, users can access
its task objects: the exhaustive list of task objects is
(engine.task), its model object (engine.model),
the number of possible pairs on design variables
(engine.num design), the number of possible pairs on
model parameters (engine.num param), the grid matrix
of design variables (engine.grid design), the grid
matrix of model parameters (engine.grid param), the
prior distribution on the grid matrix of model parameters
(engine.prior), the posterior distribution on the grid
matrix of model parameters (engine.post), the poste-
rior mean (engine.post mean), the covariance matrix
of the posterior (engine.post cov), and the standard
deviations of the posterior (engine.post sd).

Two functions are available in ADOpy for the engine object:
engine.get design() and engine.update().
The engine.get design() provides a set of designs
on each trial of the experiment given a specified design
type. With an argument of design type, users can indi-
cate the type of design to use. There are two possible values:

Behav Res

’optimal’ and ’random’. The value ’optimal’
refers to the optimal design calculated by the ADO algo-
rithm, and the value ’random’ to a uniformly sampled
design from the given design grid. The output of this func-
tion call is a dictionary that contains key-value pairs for
each design variable and its optimal or random value. If no
argument is given for design type, the optimal design
is returned by default.

Provides the optimal design
design = engine.get_design(’optimal’)

Provides a randomly chosen design
from the design grid
design = engine.get_design(’random’)

The other important use of the engine object is
update(). Here, ADOpy first performs the Bayesian
updating step described in Figs. 1 and 2 based on a
participant’s response given the design, and then computes
a new optimal design for the next trial using the updated
posterior distributions of model parameters. It takes two
arguments: the design used on the given trial (design),
and the corresponding response on that trial (response).
For example, from the observation that a participant
selects the SS option (response = 0) or the LL option
(response = 1) on the current trial, users can update the
posterior as follows:

engine.update(design, response)

Simulating responses ADOpy can be run in the simulation
mode to assess design quality and experiment efficiency
(see next section).The design itself, the model chosen,
and the grid resolution of the design space. and model
parameters all affect how ADO performs. Simulation mode
can be useful to fine-tune the aforementioned variables.
Using the engine object of the ADOpy package, users can
generate simulated responses given true parameters. As
a concrete example, let us run the simulation with true
parameter values of k = 0.12 and tau = 1.5 of the
delay discounting model described in Eq. 3. To acquire
a simulated response, we use the Bernoulli probability
distribution for a binary choice response as described below:

from scipy.stats import bernoulli

def get_simulated_response(model, design):
Probability to choose the LL option
p_obs = model.compute(

t_ss=design[’t_ss’],
t_ll=design[’t_ll’],
r_ss=design[’r_ss’],
r_ll=design[’r_ll’],
k=0.12, tau=1.5)

Compute a random binary choice
return bernoulli.rvs(p_obs)

With the functions and objects defined as above, we can
now run the simulations with a code block like this:

Set num_trials to the number of trials
for trial in range(num_trials):

1) Design optimization
design = engine.get_design(’optimal’)

2) Experiment
response = get_simulated_response(

model, design)

3) Bayesian updating
engine.update(design, response)

Note that the above code block contains the by-now
familiar trilogy: design optimization, experimentation, and
Bayesian updating, in the same way done in an actual
ADO-based experiment as described in Fig. 1.

Practical issues

Users should carefully consider several practical issues
when using ADOpy. Grid-based ADO, which is what is used
here, may demand a lot of memory. While pre-computing a
look-up table lessens repeated calculation between trials, it
requires more and more memory as the grid size increases.
Thus, users are advised to first determine the proper number
of grid points on each dimension of the model parameters
and design variables and to check if computation time with
the settings is suitable (i.e., fast enough to prevent boredom
between trials). For example, by varying grid resolution,
users can assess the trade-off in estimation accuracy and the
computational cost of that resolution. Another option is to
use a dynamic gridding algorithm, in which the grid space is
dynamically adjusted and grid points near posterior means
are more finely spaced. Adaptive mesh refinement (AMR:
e.g., Berger, 1984) is one such method. ADOpy does not
currently support dynamic-gridding; it may in the future.

A related practical issue is the computation time required
to complete Step 0 in Fig. 2, in which initial lookup tables
need to be created for the likelihood function and the entropy
for all possible values of the response, parameter, and design
variables. As noted above, it has been our experience that
this step usually takes no more than a few seconds on
standard laptops and PCs. To be concrete, for the delay
discounting task, it takes ∼ 0.5 seconds on an iMac and 1 ∼
2 seconds on a Windows PC to execute the pre-computation
step. However, this step can become progressively time-
inefficient as the dimensionality of the experimental task
increases. In such a case, we recommend to use the pickle
module of Python for saving the lookup tables and then
loading them back at the start of an experiment with each
new participant. Other means of ensuring sufficiently fast

Behav Res

computation are using linear algebra libraries (e.g., Intel
MKL, LAPACK, or BLAS), which are highly efficient and
can take advantage of multi-core CPUs, or using a remote
server or a cloud computing system, where optimal designs
are computed asynchronously.

ADOpy will eventually start to select the same or similar
design on consecutive trials. This is a sign that not much
more can be learned from the experiment (e.g., parameter
estimation is quite good). This will happen toward the end
of an experiment if there are sufficient trials. One option to
address the issue is to dilute their presence by using filler
trials, showing randomly chosen or predetermined designs
for a trial when ADO picks the same design twice or more
in a sequence. Another option is to run the experiment
in a “self-terminating mode”; stop the experiment once
a specific criterion (e.g., efficiency) is reached, e.g., the
standard deviations of posterior distributions fall below
certain predetermined values.

The focus of this tutorial is on using ADOpy for
univariate and discrete responses. One might wonder how
to extend it to multivariate and continuous responses, e.g.,
reaction times in a lexical decision task. Implementation
is much the same as in the univariate continuous case.
That is, given a multivariate continuous response vector
y = (y1, y2, ..., ym), first discretize each response variable
yi into finite grids, and then pre-compute the likelihood
function p(y|θ, d) for all discretized values of yi’s, θ , and
d in the pre-computation Step 0 in Fig. 2. From there, the
remaining steps of the ADO algorithm are the same and
straightforward.

Tasks andModels implemented in ADOpy

Currently, three tasks are implemented in the ADOpy
package; they are listed in Table 1: Psychometric function
estimation (adopy.tasks.psi), the delay discounting
task (adopy.tasks.dd), the choice under risk and
ambiguity task (adopy.tasks.cra). At least two
models are available for each task.

In this section, we describe these tasks and illustrate how
to use each task/model in ADOpy and how ADO performs
compared to traditional non-ADO (e.g., staircase, random)
methods, along with simulated results for the three tasks. In
addition, we provide and discuss a complete and full Python
script for simulating psychometric function estimation in
ADOpy.

Psychometric function estimation

Psychometric function estimation is one of the first
modeling problems in the psychological sciences in which
a Bayesian adaptive framework was applied to improve the

efficiency of psychophysical testing and analysis (Watson &
Pelli, 1983; King-Smith et al., 1994; Kujala & Lukka, 2006;
Lesmes et al., 2006). The problem involves a 2-alternative
forced choice (2AFC) task in which the participant decides
whether a psychophysical stimulus, visual or auditory, is
present or absent while the stimulus intensity is varied from
trial to trial to assess perceptual sensitivity.

The psychometric function that defines the probability of
correct detection given stimulus intensity x is given as the
following general form (Garcia-Perez, 1998; Wichmann &
Hill, 2001):

Ψ (x | α, β, γ, δ) = γ + (1 − γ − δ) F (x; α, β) (4)

The participant’s response in the psychophysical task
is recorded in either y = 1 (correct) or y = 0
(incorrect). The two-parameter sigmoid function F(x; α, β)

that characterizes the relationship between the response
probability and the stimulus intensity is typically assumed
to follow the logistic, cumulative normal, or cumulative
log Weibull form (see, e.g., Wichmann & Hill, 2001, for
further details). The parameter vector θ = (α, β, γ, δ) of the
psychometric function consists of α (threshold), β (slope),
γ (guess rate) and δ (lapse rate), as depicted in Fig. 5. Note
that design variable is stimulus intensity, i.e., d = x.

The module ‘adopy.tasks.psi’ included in the
ADOpy package provides classes for psychometric function
estimation in the 2AFC experimental paradigm (see
Table 1). In the module, Task2AFC is pre-defined for
2AFC tasks with a single design variable (stimulus) and
binary responses (0 for incorrect or 1 for correct). Without
passing any arguments, users can utilize the pre-defined
Task2AFC class as below:

from adopy.tasks.psi import Task2AFC

task = Task2AFC()

For the task, users can specify the form of the two param-
eter sigmoid psychometric function F(x; α, β) as in Eq. 4

Fig. 5 The psychometric function and its parameters defined in Eq. 4

Behav Res

from three classes: a logistic function (ModelLogistic),
a log Weibull CDF (ModelWeibull), and a normal
CDF (ModelProbit). Here, assume that the psychome-
tric function has a logistic form which computes correct
detection as:

Ψ (x | α, β, γ, δ) = γ + (1 − γ − δ) · 1

1 + exp [−β(x − α)]
. (5)

Based on Eq. 5, the ModelLogistic class in the
adopy.tasks.psi provides the equivalent model with
four parameters (threshold α, slope β, guess rate γ , and
lapse rate δ).

from adopy.tasks.psi import ModelLogistic

model = ModelLogistic()

As grid resolutions for the task and model, we provide an
example code while fixing guess rate to 0.5 and lapse rate
to 0.04 as described below. Especially for stimulus and
threshold, users should define them within appropriate
ranges for their tasks of interest.

import numpy as np

Possible stimuli are 100 points between
20log0.05 and 20log400.
grid_design = {

’stimulus’:
np.linspace(20 * np.log10(.05),

20 * np.log10(400), 100)
}

grid_param = {
’guess_rate’: [0.5],
’lapse_rate’: [0.04],
’threshold’:
np.linspace(20 * np.log10(.1),

20 * np.log10(200), 100),
’slope’: np.linspace(0, 10, 100)

}

Based on the task object, model object, and grids, the
module adopy.tasks.psi provides an Engine class,
called EnginePsi, pre-implemented for psychometric
function estimation. The EnginePsi class not only pro-
vides an optimal design or randomly chosen design, but also
computes a design using the staircase method. The stair-
case method is probably the most commonly used procedure
in adaptive estimation of the psychometric function (e.g.,
Garcia-Perez, 1998) in which stimulus intensity is adjusted
by a fixed and pre-determined amount based on a partici-
pant’s response on the current stimulus. The following code
initializes the engine and computes designs:

from adopy.tasks.psi import EnginePsi

engine = EnginePsi(model, grid_design,
grid_param)

Compute the optimal design
engine.get_design(’optimal’)

Get a randomly chosen design
engine.get_design(’random’)

Compute a design with the staircase method
engine.get_design(’staircase’)

where EnginePsi requires only three arguments (model,
designs, and params) since the task is fixed to the
psychometric function estimation.

The particular up/down scheme of the staircase method
implemented in ‘EnginePsi’ is as follows:5

xt+1 =
{

xt − Δ if yt = 1

xt + 2Δ otherwise (if yt = 0)
(6)

where Δ is a certain amount of change for every trial.
EnginePsi has a property called d step to compute
Δ, which means the number of steps for an index on the
design grid. In other words, the denser the design grid is, the
smaller Δ becomes. Initially, d step is set to 1 by default,
but users can use a different value as described below:

engine.d_step # Returns 1.
engine.d_step = 3 # Update d_step to 3.

Having defined and initialized the required task, model,
grids, and engine objects, we are now in a position to
generate simulated binary responses. This is achieved by
using the module scipy.stats.bernoulli. Here, the
data-generating parameter values are set to guess rate =
0.5, lapse rate = 0.04, threshold = 20, and slope
= 1.5:
def get_simulated_response(model, design):
from scipy.stats import bernoulli

Compute a probability to respond positively.
p_obs = model.compute(

stimulus=design[’stimulus’],
guess_rate=0.5, lapse_rate=0.04,
threshold=20, slope=1.5)

Compute a random binary choice
return bernoulli.rvs(p_obs)

5For those interested, see https://www.psychopy.org/api/data.html for
other implementations of staircase algorithms in PsychoPy (Peirce,
2007; 2009).

https://www.psychopy.org/api/data.html

Behav Res

Finally, the following example code runs 60 simulation
trials:

number of trials to simulate
num_trials = 60
’optimal’, ’random’ or ’staircase’
design_type = ’optimal’

for i in range(num_trials):
Compute a design for the current trial
design = engine.get_design(design_type)

Get a simulated response using the design
response = get_simulated_response(

model, design)

Update posterior in the engine
engine.update(design, response)

Print posterior means and SDs
print(’Trial’, i + 1, ’-’,

engine.post_mean, ’/’,
engine.post_sd)

We conclude this section with a brief presentation of
simulation results, comparing performance among three
design conditions: ADO, staircase, and random (see
Appendix B.1 for the details of the simulation setup). The
simulation results are summarized in Fig. 6. As shown
in Fig. 6a, for all three conditions, the estimation of the
threshold parameter α, as measured by root mean square
error (RMSE), converges toward the ground truth, with
ADO designs exhibiting clearly superior performance over
staircase and random designs. As for the slope parameter
β, the convergence is much slower (ADO and staircase) or
even virtually zero (random). Essentially the same patterns
of results are observed when performance is measured
by the posterior standard deviation (Fig. 6b). In short,
the simulation demonstrates the advantage of using ADO
designs in psychometric function estimation.

Delay discounting task

There exists a sizable literature on computational modeling
of delay discounting (e.g., Green & Myerson, 2004; Van-
DenBos & McClure, 2013; Cavagnaro et al., 2016). As
described earlier in Section “Basic usage”, preferential
choices between two options, SS (smaller-sooner) and LL
(larger-later), are made based on the subjective value of each
option, which takes the following form:

V = R · D(t) (7)

where V is the value of an option, R and t are the amount
of reward and delay of the option respectively, and D(t)

0

5

10

15

0 10 20 30 40 50 60

Trial

R
o
o
t
M
e
a
n
 S
q
u
a
r
e
d
 E
r
r
o
r

α (Threshold)a

0

1

2

3

4

0 10 20 30 40 50 60

Trial

R
o
o
t
M
e
a
n
 S
q
u
a
r
e
d
 E
r
r
o
r

β (Slope)

0

5

10

15

20

0 10 20 30 40 50 60

Trial

S
ta
n
d
a
r
d
 d
e
v
ia
ti
o
n

 o
f
th
e
 p
o
s
te
r
io
r
 d
is
tr
ib
u
ti
o
n

α (Threshold)b

0

1

2

3

0 10 20 30 40 50 60

Trial

S
ta
n
d
a
r
d
 d
e
v
ia
ti
o
n

 o
f
th
e
 p
o
s
te
r
io
r
 d
is
tr
ib
u
ti
o
n

β (Slope)

Design ADO Staircase Random

Fig. 6 Comparison of ADO, staircase, and random designs in the
simulation of psychometric function estimation. Simulations were
conducted using the logistic model with parameter values of threshold
α = 20, slope β = 1.5, guess rate γ = 0.5, and lapse rate
δ = 0.04. The three designed are compared with root mean squared
errors (RMSE; Panel A) and standard deviations of the posterior
distribution (Panel B). RMSE represents the discrepancy between true
and estimated parameters in that the lower RMSE, the better estimation
performance. Standard deviations of the posterior distribution indicate
the certainty of a belief on the distribution for model parameters,
i.e., the lower the standard deviations is, the higher certainty on the
model parameters. Each curve represents an average across 1,000
independent simulation runs

is the discounting factor assumed to be a monotonically
decreasing function of delay t .

Various models for the specific form of D(t) have been
proposed and evaluated, including the ones below:

Hyperbolic: D(t) = 1
1+kt

(8)

Exponential: D(t) = e−kt

Hyperboloid: D(t) = 1
(1+kt)s

Constant Sensitivity: D(t) = e−(kt)s

where the parameter k is a discounting rate and the
parameter s reflects the subjective, nonlinear scaling of
time (Green & Myerson, 2004). Based on subjective values
of options, it is assumed that preferential choices are
made stochastically depending on the difference between
the subjective values, according to Eq. 3. In summary,
the models for the delay discounting task assume at
most three parameters with θ = (k, s, τ), and there are
four design variables that can be optimized, i.e., d =
(tSS, tLL, RSS, RLL). The participant’s choice response on
each trial is binary in y = 1 (LL option) or 0 (SS option).

The module ‘adopy.tasks.dd’ included in the
ADOpy package provides classes for the delay discounting
task (see Table 1). TaskDD represents the DD task with

Behav Res

four design variables (t ss, t ll, r ss, and r ll) with a
binary choice response.

from adopy.tasks.dd import TaskDD

task = TaskDD()

In addition, the same module ‘adopy.tasks.dd’
includes six models (see Table 1): Exponential model
(Samuelson, 1937), Hyperbolic model (Mazur, 1987),
Hyperboloid model (Green & Myerson, 2004), Constant
Sensitivity model (Ebert & Prelec, 2007), Quasi-Hyperbolic
model (Laibson, 1997), and Double Exponential model
(McClure et al., 2007). Here, we demonstrate the Hyper-
bolic model which has two model parameters (k and tau)
and computes the discounting factor as in Eq. 8:

from adopy.tasks.dd import ModelHyp

model = ModelHyp()

A simulation experiment like that for Psychometric
function estimation was carried out with the hyperbolic
model, and the results from three designs (ADO, staircase,
and random). See Appendix B.2 for the details of
the simulation setup and the Python scripts used. The
simulation results are presented in Fig. 7. As the trial
progresses, the discounting rate parameter k converges
toward the ground truth for all three design conditions, with
the swiftest (almost immediate) convergence with ADO.

0.00

0.25

0.50

0.75

1.00

1.25

0 6 12 18 24 30 36 42

Trial

R
o
o
t
M
e
a
n
 S
q
u
a
r
e
d
 E
r
r
o
r

k (discounting parameter)a

0.0

0.5

1.0

0 6 12 18 24 30 36 42

Trial

R
o
o
t
M
e
a
n
 S
q
u
a
r
e
d
 E
r
r
o
r

τ (inverse temperature)

0.00

0.05

0.10

0.15

0.20

0 6 12 18 24 30 36 42

Trial

S
ta
n
d
a
r
d
 d
e
v
ia
ti
o
n

 o
f
th
e
 p
o
s
te
r
io
r
 d
is
tr
ib
u
ti
o
n

k (discounting parameter)b

0.0

0.5

1.0

1.5

0 6 12 18 24 30 36 42

Trial

S
ta
n
d
a
r
d
 d
e
v
ia
ti
o
n

 o
f
th
e
 p
o
s
te
r
io
r
 d
is
tr
ib
u
ti
o
n

τ (inverse temperature)

Design ADO Staircase Random

Fig. 7 Comparison of ADO, staircase, and random designs in the
simulation of the delay discounting task. Simulations were conducted
using the hyperbolic model with parameter values of k = 0.12 and
τ = 1.5. The three designs are compared with root mean squared errors
(RMSE; Panel A) and standard deviations of the posterior distribution
(Panel B). Each curve represents an average across 1,000 independent
simulation runs

On the other hand, the inverse temperature parameter τ

showed a much slower or even no convergence (staircase),
probably due to the relatively small sample size (i.e., 42). In
short, the simulation results, taken together, demonstrated
the superiority of ADO designs over non-ADO designs.

Choice under risk and ambiguity task

The choice under risk and ambiguity (CRA) task (Levy et al.,
2010) is designed to assess how individuals make decisions
under two different types of uncertainty: risk and ambiguity.
Example stimuli of the CRA task are shown in Fig. 8.

The task involves preferential choice decisions in which
the participant is asked to indicate a preference between
two options: (1) winning either a fixed amount of reward
denoted by RF with a probability of 0.5 or winning none
otherwise; and (2) winning a varying amount of reward
(RV) with a varying probability (pV) or winning none
otherwise. Further, the variable option comes in two types:
(a) risky type in which the winning probabilities are fully
known to the participant; and (b) ambiguous type in which
the winning probabilities are only partially known to the
participant. The level of ambiguity (AV) in the latter type
is varied between 0 (no ambiguity and thus fully known)
and 1 (total ambiguity and thus fully unknown). As a
concrete example, the CRA task of Levy et al. (2010)
employed the following values: RF = 5 (reference option);
RV ∈ {5, 9.5, 18, 34, 65}, pV ∈ {0.13, 0.25, 0.38} and
AV = 0 (variable options on risky trials); and finally, RV ∈
{5, 9.5, 18, 34, 65}, pV = 0.5 and AV ∈ {0.25, 0.5, 0.75}
(variable options on ambiguity trials).

The linear model (Levy et al., 2010) for the CRA task
assumes that choices are based on subjective values of the
two options. The subjective values are computed using the
following form:

UF = 0.5 · (RF)α

UV =
[
pV − β

(
AV

2

)]
· (RV)α (9)

where UF and UV are subjective values for fixed
and variable options respectively, α is the risk attitude
parameter, β is the ambiguity attitude parameter. RF and
RV are the amounts of reward for fixed and variable
options, AV and pV are the ambiguity level and the
probability to win for a variable option. Both choices are
made stochastically based on the difference between the
subjective values according to the softmax choice rule:

P(V over F) = 1

1 + exp[−γ (UV − UF)] . (10)

Behav Res

Fig. 8 Illustrated scheme of the choice under risk and ambiguity
(CRA) task. The participant chooses one of two options on either a
risky trial (left) or an ambiguous trial (right). A risky option has the
amount of reward and a probability of winning the reward indicated
by the upper, brown proportion of the box. For an ambiguous option,

the probability to win is not explicitly shown but partially blocked
by a gray box. On each trial, a risk or ambiguous option is always
paired with a fixed (reference) option whose probability of winning
the reward is set to 0.5

where P(V over F) represents the probability of choosing
the variable option over the fixed one, and the parameter
γ represents the inverse temperature that captures the
participant’s response consistency.

To summarize, the CRA model assumes three parame-
ters, θ = (α, β, γ), of α (risk attitude), β (ambiguity atti-
tude), and γ (response consistency). There are four design
variables to be optimized: d = (RF , RV , AV , pV) where
RF > 0,RV > 0, 0 < AV < 1, and 0 < pV < 1 is made up
ofRF (reward amount for fixed option),RV (reward amount
for variable option), AV (ambiguity level) and pV (winning
probability for variable option). The participant’s preferen-
tial choice on each trial is recorded in either y = 1 (variable
option) or y = 0 (fixed option).

The module ‘adopy.tasks.cra’ in the ADOpy
package provides classes for the choice under risk and
ambiguity task (see Table 1). TaskCRA represents the CRA
task with four design variables denoted by p var (pV),
a var (AV), r var (RV), and r fix (RF), and a binary
choice response.

from adopy.tasks.cra import TaskCRA

task = TaskCRA()

ADOpy currently implements two models of the CRA
task: Linear model (Levy et al., 2010) and Exponential
model (Hsu et al., 2005). For the linear model in Eq. 9, users
can define and initialize the model with ModelLinear as:

from adopy.tasks.cra import ModelLinear

model = ModelLinear()

Now, we briefly discuss results of simulated experiments
using the linear model with three design conditions: ADO,
fixed, and random design. The fixed design refers to those
originally used by Levy et al. (2010). See Appendix B.3
for the details of the simulation setup and code. The
results summarized in Fig. 9 indicate that two parameters,
α (risk attitude) and β (ambiguity attitude), converged
to their respective ground truth most rapidly under the
ADO condition. On the other hand, the inverse temperature
parameter (γ) showed little, if any, convergence for any of
the designs, probably due to the relatively small sample size
(i.e., 60).

Integrating ADOpy with experiments

In this section we describe how to integrate ADOpy into
a third-party Python package for conducting psychological
experiments, such as PsychoPy (Peirce, 2007; 2009),
OpenSesame (Mathôt et al., 2012), or Expyriment (Krause
& Lindemann, 2014). Integration is accomplished following
a two-step procedure described below.

First, users should create and initialize an ADOpy
Engine object. This corresponds to the initialization
step illustrated in Fig. 3. Users can create their own
task and model as described in Section “ADOpy” or
use pre-implemented tasks and models in ADOpy (see
Section “Tasks and Models implemented in ADOpy”).
Remember that the number of design variables, model
parameters, and the grid sizes affect the computation time,
so users should ensure the appropriateness of their choice of
grid sizes, for example, by running simulations as described
in Section “Practical issues”.

Behav Res

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Trial

R
o
o
t
M
e
a
n
 S
q
u
a
r
e
d
 E
r
r
o
r

α (risk attitude parameter)a

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60

Trial

R
o
o
t
M
e
a
n
 S
q
u
a
r
e
d
 E
r
r
o
r

β (ambiguity attitude parameter)

0

1

2

3

0 10 20 30 40 50 60

Trial

R
o
o
t
M
e
a
n
 S
q
u
a
r
e
d
 E
r
r
o
r

γ (inverse temperature)

0.0

0.3

0.6

0.9

1.2

0 10 20 30 40 50 60

Trial

S
ta
n
d
a
r
d
 d
e
v
ia
ti
o
n

 o
f
th
e
 p
o
s
te
r
io
r
 d
is
tr
ib
u
ti
o
n

α (risk attitude parameter)b

0.0

0.5

1.0

1.5

2.0

0 10 20 30 40 50 60

Trial
S
ta
n
d
a
r
d
 d
e
v
ia
ti
o
n

 o
f
th
e
 p
o
s
te
r
io
r
 d
is
tr
ib
u
ti
o
n

β (ambiguity attitude parameter)

0

1

2

3

4

0 10 20 30 40 50 60

Trial

S
ta
n
d
a
r
d
 d
e
v
ia
ti
o
n

 o
f
th
e
 p
o
s
te
r
io
r
 d
is
tr
ib
u
ti
o
n

γ (inverse temperature)

Design ADO Fixed Random

Fig. 9 Comparison of ADO, fixed, and random designs in the simu-
lation of the choice under risk and ambiguity task. The fixed design
was pre-determined according to Levy et al. (2010). Simulations were
conducted using the linear model with parameter values of α = 0.66,

β = 0.67, and γ = 3.5. Three designed are compared with root mean
squared errors (RMSE; Panel A) and standard deviations of the pos-
terior distribution (Panel B). Each curve represents an average across
1,000 independent simulation runs

Second, users should integrate this code into the code
for a running experiment. The interface between the two
requires collecting observations from a participant using
a computed optimal design and updating the engine on
each trial with the collected response. ‘run trial’ is
an experimenter-created function for data collection. It
takes as arguments the given design values on each trial,
and then returns the participant’s response. This function,
‘run trial’, can be used for both simulated and real data.
Users can also run run trialwithin a for-loop to conduct
an ADO experiment in multiple trials as shown below:

for trial in range(num_trials):
1) Design optimization
design = engine.get_design()
2) Experiment
response = run_trial(design)
3) Bayesian updating
engine.update(design, response)

Note that the three lines inside the for-loop correspond to
the three steps in Fig. 1.

In what follows, we elaborate and illustrate how to run
ADOpy in the DD task, using a fully worked-out annotated
Python script (Appendix C). Users new to ADO will find the
PsychoPy program in the appendix without any modifi-
cation of the code after installing ADOpy and PsychoPy.
The program runs the DD task using optimal designs com-
puted by ADOpy. A short description for the ADO-powered
DD task is provided below, while the non-ADO version is
available on the Github repository of ADOpy.6

6https://github.com/adopy/adopy/tree/master/examples

To utilize ADO on the program, we first need to load the
ADOpy classes, the DD task and the model of our choice
(hyperbolic in this case). We could have chosen a different
model or defined one by ourselves and used it (see lines
58–61 in Fig. 10).

To run the DD task, we define a function run trial
that conducts an experiment using a given design on a
single trial (see Appendix C, lines 250–288). Then, for
the initialization step, Task, Model and Engine objects
should be initialized. As in Section “Delay discounting
task”, users can use the implemented task and models for
the DD task (lines 329–357 in Fig. 10).

Once the engine is created, the code to run the ADO-
based version is actually simpler than the non-ADO version
(lines 420–429 in Fig. 10; see lines 435–460 for the non-
ADO version on the Github repository). Using the Engine
class of the ADOpy package, it finds the optimal design and
updates itself from observation with a single line of code for
each.

Conclusion

ADOpy is a toolbox for optimizing design selection on each
trial in real time so as to maximize the informativeness
and efficiency of data collection. The package implements
Bayesian adaptive parameter estimation for three behavioral
tasks: psychometric function estimation, delay discounting,
and choice under risk and ambiguity. Each task can be run in
an ADO-based mode or a non-ADO-based mode (random,
fixed, staircase depending on the task). Default parameter

https://github.com/adopy/adopy/tree/master/examples

Behav Res

Fig. 10 Main codes for running the delay discounting task with ADOpy, from a fully work-out annotated script in Appendix C

and design values can be used, or the user can customize
these settings, including the number of trials, the parameter
ranges, and the grid resolution (i.e., number of grid points on
each parameter/design dimension). Furthermore, in addition
to conducting an actual experiment with participants, the
package can be used to run parameter recovery simulations
to assess ADO’s performance. Is it likely to be superior (i.e.,
more precise and efficient) to random and other (staircase,
fixed) designs? By performing a comparison as described
in the preceding section, a question like this one can be
answered. Causes for unsatisfactory performance can be
evaluated, such as altering grid resolution or the number

of trials. More advanced users can conduct Bayesian
sensitivity analysis on the choice of priors.

The need to tune ADO to a given experimental setup
might make readers leery of the methodology. Shouldn’t
it be more robust and work flawlessly in any setting
without such fussing? Like any machine-learning method,
use of ADO requires parameter tuning to maximize
performance. ADOpy’s simulation mode is an easy and
convenient way to explore how changes in the design and
grid resolution alter ADO’s performance. Experimenter-
informed decisions about the properties of the design space
will result in the greatest gains in an ADO experiment.

Behav Res

Use of ADOpy is not limited to the models that come
with the package. Users can define their own model using
the Model class. Specification of the model’s probability
density (or mass) function is all that is required along
with the parameters, including any changes to the design
space, as mentioned above. For example, it would be
straightforward to create ADO-based experiments for other
behavioral tasks, such as the balloon analog risk task
(BART: Lejuez et al., 2002; Wallsten et al., 2005) for
assessing risk-taking propensity.

The ADOpy package, as currently implemented, has sev-
eral limitations. ADOpy cannot optimize the selection of
design variables that are not expressed in the probability
density (or mass) function of the model. For example, if
a researcher is interested in learning how degree of dis-
tractibility (low or high level of background noise) impacts
decision making, unless this construct were factored into
the model as a design variable, ADOpy would not optimize
on this dimension. This limitation does not prevent ADO
from being used by the researcher; it just means that the
experiment will not be optimized on that stimulus dimen-
sion. Another limitation that users must be sensitive to is the
memory demands of the algorithm. As discussed earlier, the
algorithm creates a pre-computed look-up table of all pos-
sible discretized combinations of the outcome variable, the
parameters, and the design variables. For example, for 100
grid points defined on each outcome variable, three param-
eters, and three design variables, the total memory demand
necessary to store the look-up table would be 1014 bytes
(= 1001+3+3), i.e., 100 terabytes, assuming one byte allot-
ted for storing each data point. This is clearly well beyond
what most desktops or servers can handle. In short, as the
dimensionality of the ADO problem increases linearly, the
memory demand of the grid-based ADO algorithm grows
exponentially, sooner or later hitting a hardware limitation.
Grid-based ADO does not scale up well, technically speak-
ing. The good news is that there is a scalable algorithm that
does not tax memory. It is known as sequential Monte Carlo
(SMC) or particle filter in machine learning (Doucet et al.,
2001; Andrieu et al., 2003; Cappe et al., 2007).

In conclusion, the increasing use of computational meth-
ods for analyzing and modeling data is improving how
science is practiced. ADOPy is a novel and promising
tool that has the potential to improve the quality of infer-
ence in experiments. This is accomplished by exploiting
the predictive precision of computational modeling in con-
junction with the power of statistical and machine learning
algorithms to perform better inference. It is our hope that
ADOpy will empower more researchers to harness this
technology, one outcome of which should be more infor-
mative and efficient experiments that collectively accelerate
advances in psychological science and beyond.

Acknowledgements The research was supported by National Insti-
tute of Health Grant R01-MH093838 to M.A.P. and J.I.M, the
Basic Science Research Program through the National Research
Foundation (NRF) of Korea funded by the Ministry of Science,
ICT, & Future Planning (NRF-2018R1C1B3007313 and NRF-
2018R1A4A1025891), the Institute for Information & Communi-
cations Technology Planning & Evaluation (IITP) grant funded by
the Korea government (MSIT) (No. 2019-0-01367, BabyMind), and
the Creative-Pioneering Researchers Program through Seoul National
University to W.-Y.A. Portions of this paper are published in the Pro-
ceedings of the 41st Annual Meeting of the Cognitive Science Society
held in July, 2019.

Appendix A: Defining grids for delay
discounting task

As the first example, suppose that the delay discounting task
has two constraints on its designs: the delay of SS option
should be smaller than that of LL option (t ss < t ll),
and the amount of reward of SS option should be smaller than
that ofLLoption (r ss < r ll).Considering sevendelays
(i.e., right now, twoweeks, a month, six months, a year, three
years, and ten years) and 79 possible rewards (from $12.5 to
$787.5 with an increment of $12.5), users can make a grid
for design variables by executing the following lines:

Delays in a weekly unit
tval = [0, 2, 4.3, 26, 52, 104, 520]

[12.5, 25, ..., 775, 787.5] as rewards
rval = np.arange(12.5, 800, 12.5)

Make a 2d matrix with rows of [t_ss, t_ll]
t_joint = []
for t_ss in tval:

for t_ll in tval:
if t_ss < t_ll:
t_joint.append([t_ss, t_ll])

t_joint = np.array(t_joint)

Make a 2d matrix with rows of [r_ss, r_ll]
r_joint = []
for r_ss in rval:

for r_ll in rval:
if r_ss < r_ll:
r_joint.append([r_ss, r_ll])

r_joint = np.array(r_joint)

grid_design = {
(’t_ss’, ’t_ll’): t_joint,
(’r_ss’, ’r_ll’): r_joint,

}

Behav Res

As an another example, if users want to use the amount
of reward of the SS option (r ss) and the delay of the LL
option (t ll) while fixing t ss to 0 and r ll to $800,
define a grid as shown below:

grid_design = {
t_ss: [Now]
’t_ss’: [0],
t_ll: [2 weeks, 1 month, 6 months,
1 year, 2 years, 10 years]
’t_ll’: [2, 4.3, 26, 52, 104, 520],
r_ss: [$12.5, $25, ..., $775, $787.5]
’r_ss’: np.arange(12.5, 800, 12.5),
r_ll: $800
’r_ll’: [800]

}

For model parameters, users should define a grid object
containing grid points on a proper range for each parameter.
For example, a grid for the hyperbolic model (Mazur,
1987) with two parameters (k and τ) can be defined as
follows:

grid_param = {
20 points on [10 -̂5, 1] in a log scale
’k’: np.logspace(-5, 0, 20),
20 points on [0, 5] in a linear scale
’tau’: np.linspace(0, 5, 20)

}

Appendix B: ADOpy simulations

Psychometric function estimation

Simulations for psychometric function estimation were
conducted for a simple 2-alternative forced choice (2AFC)
task with one design variable. With an assumption that the
psychometric function has a logistic function shape, we ran
1,000 simulations for three designs: (a) ADO design, (b)
staircase design, and (c) randomly chosen design. For each
simulation, responses were simulated for a total of 60 trials,
using Task2AFC and ModelLogistic in the module
adopy.tasks.psi.

Simulated responses were generated with true parameter
values of threshold α = 20, slope β = 1.5, guess rate
γ = 0.5, and lapse rate δ = 0.04. The simulation for

psychometric function estimation used 100 grid points for
the design variable (stimulus) and two model parameters
(threshold and slope) each, and the guess and lapse
rates were fixed to 0.5 and 0.04, respectively. The grid
settings were given as follows:

• Design variable

– stimulus: 100 grid points from
20 log10 0.05 to 20 log10 400 in a log scale.

• Model parameters

– threshold: 100 grid points from
20 log10 0.1 to 20 log10 200 in a log scale.

– slope: 100 grid points from 0 to 10 in a linear
scale.

– guess rate: fixed to 0.5.
– lapse rate: fixed to 0.04.

Delay discounting task

Assuming the hyperbolic model, simulations for the delay
discounting (DD) task were conducted using TaskDD
and ModelHyp in the module adopy.tasks.dd. We
compared three designs: (a) ADO design, (b) staircase
design, and (c) randomly chosen design. The staircase
method runs 6 trials for each delay to estimate the
discounting rate. While tSS is fixed to 0, it starts with RSS

of $400 and RLL of $800. If a participant chooses the SS
option, the staircase method increases RSS by 50%; if the
participant chooses the LL option, it decreases RSS by 50%.
After repeating this 5 times, it proceeds to another delay
value.

One thousand independent simulations were performed
for each design condition, each for a total of 108 trials.
Simulated data were generated using the true parameter
values of k = 0.12 and τ = 1.5. Grid resolutions used for
the simulations were as follows:

• Design variables

– t ss: fixed to 0, which means ’right now’.
– t ll: 18 delays (3 days, 5 days, 1 week, 2

weeks, 3 weeks, 1 month, 6 weeks, 2 months,
10 weeks, 3 months, 4 months, 5 months, 6
months, 1 year, 2 years, 3 years, 5 years, 10
years) in a unit of a week.

– r ss: 63 points from $12.5 to $787.5 with an
increment of $12.5.

– r ll: fixed to $800.

Behav Res

• Model parameters

– k (discounting rate): 20 grid points from 10−5

to 1 in a log scale.
– tau (inverse temperature): 20 grid points from

0 to 5 in a linear scale.

Choice under risk and ambiguity task

In simulating this CRA task, we assume the linear model
and considered three methods for experimental designs in
the simulation study: (a) ADO design, (b) ’fixed’ design of
Levy et al. (2010), and (c) random design.

The fixed design was set as follow. The the reward of the
fixed option (RF) to 5 and the rewards of the variable option
(RV) to 5, 9.5, 18, 34, 65. In risky trials, ambiguity (AV)
is set to 0 but the probability of winning for the variable
option (PV) is chosen among 0.13, 0.25, and 0.38. On the
other hand, in ambiguous trials, the probability pV is set to
0.5 but the ambiguity AV is chosen from 0.25, 0.5, and 0.75.
The total number of combinations is 30: 15 of which are for
risky trials, and the rest of which are for ambiguous trials.

Grid settings for the four design variables and the three
model parameters were set as follows:

• Design variables

– p var and a var in risky trials: there are
9 probabilities to win for p var (0.05, 0.10,
0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45), and
a var was fixed to 0.

– p var and a var in ambiguous trials: there
are 6 levels of ambiguity for a var (0.125,
0.25, 0.375, 0.5, 0.625, 0.75), and p var was
fixed to 0.5.

– r var and r fix: based on 10 reward values
(10, 15, 21, 31, 45, 66, 97, 141, 206, 300),
rewards pairs such that r var > r fix
were used.

• Model parameters

– alpha (risk attitude parameter): 11 grid
points from 0 to 3 in a linear scale.

– beta (ambiguity attitude parameter): 11 grid
points from −3 to 3 in a linear scale.

– gamma (inverse temperature): 11 grid points
from 0 to 5 in a linear scale.

One thousand independent simulations were performed
for each design condition, each for a total of 60
trials, with 30 risky and 30 ambiguous trials. Simulated
data were generated using the true parameter values of
α = 0.66, β = 0.67, and γ = 3.5 based on
Levy et al. (2010).

Appendix C: Fully worked-out python script
for delay discounting task
1 #!/usr/bin/env python3

2 """

3 Delay discounting task implementation using ADO designs

4 ===

5
6 This is the PsychoPy-based implementation of the delay discounting task using

7 ADOpy. Delay discounting (DD) task is one of the widely used psychological

8 tasks that measures individual differences in temporal impulsivity

9 (e.g., Green & Myerson, 2004; Vincent, 2016). In a typical DD task,

10 a participant is asked to indicate his/her preference between two options,

11 a smaller-sooner (SS) option or stimulus (e.g., 8 dollars now) and

12 a larger-later (LL) option (e.g., 50 dollars in a month).

13 The DD task contains four design variables: ‘t_ss‘ (delay for SS option),

14 ‘t_ll‘ (delay for LL option), ‘r_ss‘ (reward for SS option), and ‘r_ll‘

15 (reward for LL option). By the definition, ‘t_ss‘ should be sooner than ‘t_ll‘,

16 while ‘r_ss‘ should be smaller than ‘r_ll‘.

17 To make the task design simpler, ‘t_ss‘ and ‘r_ll‘ are fixed to 0 (right now)

18 and $800, respectively; only two design variables (‘r_ss‘ and ‘t_ll‘) vary

19 throughout this implementation.

20
21 In each trial, given two options, a participant chooses one;

22 the response is coded as ‘0‘ for choosing SS option and ‘1‘ for choosing LL

23 option. In this implementation, the hyperbolic model is used to estimate the

24 discounting rate underlying participants’ behaviors. The model contains two

25 parameters: ‘k‘ (discounting rate) and ‘tau‘ (choice sensitivity).

26
27 Using ADOpy, this code utilizes ADO designs that maximizes information gain

28 for estimating these model parameters. Also, using grid-based algorithm,

29 ADOpy provides the mean and standard deviation of the posterior distribution

30 for each parameter in every trial. Trial-by-trial information throughout

31 the task is be saved to the subdirectory ‘task‘ of the current working

32 directory.

33
34 Prerequisites

35 -------------

36 * Python 3.5 or above

37 * Numpy

38 * Pandas

39 * PsychoPy

40 * Piglet 1.3.2

41 * ADOpy 0.3.1

42 """

43
44 ###

45 # Load depandancies

46 ###

47
48 # To handle paths for files and directories

49 from pathlib import Path

50
51 # Fundamental packages for handling vectors, matrices, and dataframes

52 import numpy as np

53 import pandas as pd

54
55 # An open-source Python package for experiments in neuroscience & psychology

56 from psychopy import core, visual, event, data, gui

57
58 # Import the basic Engine class of the ADOpy package and pre-implemented

59 # Task and Model classes for the delay discounting task.

60 from adopy import Engine

61 from adopy.tasks.dd import TaskDD, ModelHyp

62
63 ###

64 # Global variables

65 ###

66
67 # Path to save the output data. Currently set to the subdirectory ‘data‘ of the

68 # current working directory.

Behav Res

69 PATH_DATA = Path(’./data’)

70
71 # Variables for size and position of an option box in which a reward and a

72 # delay are shown. BOX_W means the width of a box; BOX_H means the height of

73 # a box; DIST_BTWN means the distance between two boxes.

74 BOX_W = 6

75 BOX_H = 6

76 DIST_BTWN = 8

77
78 # Configurations for text. TEXT_FONT means a font to use on text; TEXT_SIZE

79 # means the size of text.

80 TEXT_FONT = ’Arial’

81 TEXT_SIZE = 2

82
83 # Keys for response. KEYS_LEFT and KEYS_RIGHT contains a list of keys to

84 # indicate that a participant wants to choose the left or right option.

85 # KEYS_CONT represents a list of keys to continue to the next screen.

86 KEYS_LEFT = [’left’, ’z’, ’f’]

87 KEYS_RIGHT = [’right’, ’slash’, ’j’]

88 KEYS_CONT = [’space’]

89
90 # Instruction strings. Each group of strings is show on a separate screen.

91 INSTRUCTION = [

92 # 0 - intro

93 """

94 This task is the delay discounting task.

95
96 On every trial, two options will be presented on the screen.

97
98 Each option has a possible reward you can earn and

99
100 a delay to obtain the reward.

101
102
103 Press <space> to proceed.

104 """,

105 # 1 - intro

106 """

107 You should choose what you prefer between two options

108
109 by pressing <f> (left option) or <j> (right option).

110
111
112 Press <space> to proceed.

113 """,

114 # 2 - intro

115 """

116 Let’s do some practices to check if you understand the task.

117
118
119 Press <space> to start practices.

120 """,

121 # 3 - intermission

122 """

123 Great job. Now, Let’s get into the main task.

124
125 Press <space> to start a main game.

126 """,

127 # 4 - last

128 """

129 You completed all the game.

130
131 Thanks for your participation.

132
133
134 Press <space> to end.

135 """,

136]

137
138
139 ###

140 # Functions for the delay discounting task

141 ###

142
143
144 def convert_delay_to_str(delay):

145 """Convert a delay value in a weekly unit into a human-readable string."""

146 tbl_conv = {

147 0: ’Now’,

148 0.43: ’In 3 days’,

149 0.714: ’In 5 days’,

150 1: ’In 1 week’,

151 2: ’In 2 weeks’,

152 3: ’In 3 weeks’,

153 4.3: ’In 1 month’,

154 6.44: ’In 6 weeks’,

155 8.6: ’In 2 months’,

156 10.8: ’In 10 weeks’,

157 12.9: ’In 3 months’,

158 17.2: ’In 4 months’,

159 21.5: ’In 5 months’,

160 26: ’In 6 months’,

161 52: ’In 1 year’,

162 104: ’In 2 years’,

163 156: ’In 3 years’,

164 260: ’In 5 years’,

165 520: ’In 10 years’

166 }

167 mv, ms = None, None

168 for (v, s) in tbl_conv.items():

169 if mv is None or np.square(delay - mv) > np.square(delay - v):

170 mv, ms = v, s

171 return ms

172
173
174 def show_instruction(inst):

175 """

176 Show a given instruction text to the screen and wait until the

177 participant presses any key in KEYS_CONT.

178 """

179 global window

180
181 text = visual.TextStim(window, inst, font=TEXT_FONT,

182 pos=(0, 0), bold=True, height=0.7, wrapWidth=30)

183 text.draw()

184 window.flip()

185
186 _ = event.waitKeys(keyList=KEYS_CONT)

187
188
189 def show_countdown():

190 """Count to three before starting the main task."""

191 global window

192
193 text1 = visual.TextStim(window, text=’1’, pos=(0., 0.), height=2)

194 text2 = visual.TextStim(window, text=’2’, pos=(0., 0.), height=2)

195 text3 = visual.TextStim(window, text=’3’, pos=(0., 0.), height=2)

196
197 text3.draw()

198 window.flip()

199 core.wait(1)

200
201 text2.draw()

202 window.flip()

203 core.wait(1)

204

Behav Res

205 text1.draw()

206 window.flip()

207 core.wait(1)

208
209
210 def draw_option(delay, reward, direction, chosen=False):

211 """Draw an option with a given delay and reward value."""

212 global window

213
214 pos_x_center = direction * DIST_BTWN

215 pos_x_left = pos_x_center - BOX_W

216 pos_x_right = pos_x_center + BOX_W

217 pos_y_top = BOX_H / 2

218 pos_y_bottom = -BOX_H / 2

219
220 fill_color = ’darkgreen’ if chosen else None

221
222 # Show the option box

223 box = visual.ShapeStim(window,

224 lineWidth=8,

225 lineColor=’white’,

226 fillColor=fill_color,

227 vertices=((pos_x_left, pos_y_top),

228 (pos_x_right, pos_y_top),

229 (pos_x_right, pos_y_bottom),

230 (pos_x_left, pos_y_bottom)))

231 box.draw()

232
233 # Show the reward

234 text_a = visual.TextStim(window,

235 ’${:,.0f}’.format(reward),

236 font=TEXT_FONT,

237 pos=(pos_x_center, 1))

238 text_a.size = TEXT_SIZE

239 text_a.draw()

240
241 # Show the delay

242 text_d = visual.TextStim(window,

243 convert_delay_to_str(delay),

244 font=TEXT_FONT,

245 pos=(pos_x_center, -1))

246 text_d.size = TEXT_SIZE

247 text_d.draw()

248
249
250 def run_trial(design):

251 """Run one trial for the delay discounting task using PsychoPy."""

252 # Use the PsychoPy window object defined in a global scope.

253 global window

254
255 # Direction: -1 (Left - LL / Right - SS) or

256 # +1 (Left - SS / Right - LL)

257 direction = np.random.randint(0, 2) * 2 - 1 # Return -1 or 1

258 is_ll_on_left = int(direction == -1)

259
260 # Draw SS and LL options using the predefined function ‘draw_option‘.

261 draw_option(design[’t_ss’], design[’r_ss’], -1 * direction)

262 draw_option(design[’t_ll’], design[’r_ll’], 1 * direction)

263 window.flip()

264
265 # Wait until the participant responds and get the response time.

266 timer = core.Clock()

267 keys = event.waitKeys(keyList=KEYS_LEFT + KEYS_RIGHT)

268 rt = timer.getTime()

269
270 # Check if the pressed key is for the left option.

271 key_left = int(keys[0] in KEYS_LEFT)

272

273 # Check if the obtained response is for SS option (0) or LL option (1).

274 response = int((key_left and is_ll_on_left) or

275 (not key_left and not is_ll_on_left)) # LL option

276
277 # Draw two options while highlighting the chosen one.

278 draw_option(design[’t_ss’], design[’r_ss’], -1 * direction, response == 0)

279 draw_option(design[’t_ll’], design[’r_ll’], 1 * direction, response == 1)

280 window.flip()

281 core.wait(1)

282
283 # Show an empty screen for one second.

284 window.flip()

285 core.wait(1)

286
287 return is_ll_on_left, key_left, response, rt

288
289
290 ###

291 # PsychoPy configurations

292 ###

293
294 # Show an information dialog for task settings. You can set default values for

295 # number of practices or trials in the main task in the ‘info‘ object.

296 info = {

297 ’Number of practices’: 5,

298 ’Number of trials’: 20,

299 }

300 dialog = gui.DlgFromDict(info, title=’Task settings’)

301 if not dialog.OK:

302 core.quit()

303
304 # Process the given information from the dialog.

305 n_trial = int(info[’Number of trials’])

306 n_prac = int(info[’Number of practices’])

307
308 # Timestamp for the current task session, e.g. 202001011200.

309 timestamp = data.getDateStr(’%Y%m%d%H%M’)

310
311 # Make a filename for the output data.

312 filename_output = ’ddt_{}.csv’.format(timestamp)

313
314 # Create the directory to save output data and store the path as path_output

315 PATH_DATA.mkdir(exist_ok=True)

316 path_output = PATH_DATA / filename_output

317
318 # Open a PsychoPy window to show the task.

319 window = visual.Window(size=[1440, 900], units=’deg’, monitor=’testMonitor’,

320 color=’#333’, screen=0, allowGUI=True, fullscr=False)

321
322 # Assign the escape key for a shutdown of the task

323 event.globalKeys.add(key=’escape’, func=core.quit, name=’shutdown’)

324
325 ###

326 # ADOpy Initialization

327 ###

328
329 # Create Task and Model for the delay discounting task.

330 task = TaskDD()

331 model = ModelHyp()

332
333 # Define a grid for 4 design variables of the delay discounting task:

334 # ‘t_ss‘, ‘t_ll‘, ‘r_ss‘, and ‘r_ll‘.

335 # ‘t_ss‘ and ‘r_ll‘ are fixed to ’right now’ (0) and $800.

336 # ‘t_ll‘ can vary from 3 days (0.43) to 10 years (520).

337 # ‘r_ss‘ can vary from $12.5 to $787.5 with an increment of $12.5.

338 # All the delay values are converted in a weekly unit.

339 grid_design = {

340 ’t_ss’: [0],

Behav Res

341 ’t_ll’: [0.43, 0.714, 1, 2, 3, 4.3, 6.44, 8.6, 10.8, 12.9,

342 17.2, 21.5, 26, 52, 104, 156, 260, 520],

343 ’r_ss’: np.arange(12.5, 800, 12.5), # [12.5, 25, ..., 787.5]

344 ’r_ll’: [800]

345 }

346
347 # Define a grid for 2 model parameters of the hyperbolic model:

348 # ‘k‘ and ‘tau‘.

349 # ‘k‘ is chosen as 50 grid points between 10 -̂5 and 1 in a log scale.

350 # ‘tau‘ is chosen as 50 grid points between 0 and 5 in a linear scale.

351 grid_param = {

352 ’k’: np.logspace(-5, 0, 50),

353 ’tau’: np.linspace(0, 5, 50)

354 }

355
356 # Initialize the ADOpy engine with the task, model, and grids defined above.

357 engine = Engine(task, model, grid_design, grid_param)

358
359 ###

360 # Main codes

361 ###

362
363 # Make an empty DataFrame ‘df_data‘ to store trial-by-trial information,

364 # with given column labels as the ‘columns‘ object.

365 columns = [

366 ’block’, ’trial’,

367 ’t_ss’, ’t_ll’, ’r_ss’, ’r_ll’,

368 ’is_ll_on_left’, ’key_left’, ’response’, ’rt’,

369 ’mean_k’, ’mean_tau’

370]

371 df_data = pd.DataFrame(None, columns=columns)

372
373 # ---

374 # Practice block (using randomly chosen designs)

375 # ---

376
377 # Show instruction screens (0 - 2)

378 show_instruction(INSTRUCTION[0])

379 show_instruction(INSTRUCTION[1])

380 show_instruction(INSTRUCTION[2])

381
382 # Show countdowns for the practice block

383 show_countdown()

384
385 # Run practices

386 for trial in range(n_prac):

387 # Get a randomly chosen design for the practice block

388 design = engine.get_design(’random’)

389
390 # Run a trial using the design

391 is_ll_on_left, key_left, response, rt = run_trial(design)

392
393 # Append the current trial into the DataFrame

394 df_data = df_data.append(pd.Series({

395 ’block’: ’prac’,

396 ’trial’: trial + 1,

397 ’t_ss’: design[’t_ss’],

398 ’t_ll’: design[’t_ll’],

399 ’r_ss’: design[’r_ss’],

400 ’r_ll’: design[’r_ll’],

401 ’is_ll_on_left’: is_ll_on_left,

402 ’key_left’: key_left,

403 ’response’: response,

404 ’rt’: rt,

405 }), ignore_index=True)

406
407 # Save the current data into a file

408 df_data.to_csv(path_output, index=False)

409
410 # ---

411 # Main block (using ADO designs)

412 # ---

413
414 # Show an instruction screen (3)

415 show_instruction(INSTRUCTION[3])

416
417 # Show countdowns for the main block

418 show_countdown()

419
420 # Run the main task

421 for trial in range(n_trial):

422 # Get a design from the ADOpy Engine

423 design = engine.get_design()

424
425 # Run a trial using the design

426 is_ll_on_left, key_left, response, rt = run_trial(design)

427
428 # Update the engine

429 engine.update(design, response)

430
431 # Append the current trial into the DataFrame

432 df_data = df_data.append(pd.Series({

433 ’block’: ’main’,

434 ’trial’: trial + 1,

435 ’t_ss’: design[’t_ss’],

436 ’t_ll’: design[’t_ll’],

437 ’r_ss’: design[’r_ss’],

438 ’r_ll’: design[’r_ll’],

439 ’is_ll_on_left’: is_ll_on_left,

440 ’key_left’: key_left,

441 ’response’: response,

442 ’rt’: rt,

443 ’mean_k’: engine.post_mean[0],

444 ’mean_tau’: engine.post_mean[1],

445 ’sd_k’: engine.post_sd[0],

446 ’sd_tau’: engine.post_sd[1],

447 }), ignore_index=True)

448
449 # Save the current data in a file

450 df_data.to_csv(path_output, index=False)

451
452 # Show the last instruction screen (4)

453 show_instruction(INSTRUCTION[4])

454
455 # Close the PsychoPy window

456 window.close()

References

Ahn, W.-Y., Gu, H., Shen, Y., Haines, N., Hahn, H., Teater, J. E.,
. . . , Pitt, M. A. (2019). Rapid, precise, and reliable phenotyping of
delay discounting using a Bayesian learning algorithm. bioRxiv.

Ahn, W.-Y., Haines, N., & Zhang, L. (2017). Revealing neurocomputa-
tional mechanisms of reinforcement learning and decision-making
with the hbayesdm package. Computational Psychiatry, 1, 24–57.

Amzal, B., Bois, F. Y., Parent, E., & Robert, C. P. (2006). Bayesian-
optimal design via interacting particle systems. Journal of the
American Statistical Association, 101(474), 773–785.

Andrieu, C., DeFreitas, N., Doucet, A., & Jornan, M. J. (2003). An
introduction to MCMC for machine learning. Machine Learning,
50, 5–43.

Behav Res

Aranovich, G. J., Cavagnaro, D. R., Pitt, M. A., Myung,
J. I., & Mathews, C. A. (2017). A model-based analysis of
decision making under risk in obsessive-compulsive and hoarding
disorders. Journal of Psychiatric Research, 90, 126–132.

Atkinson, A., & Donev, A. (1992). Optimum experimental designs.
London: Oxford University Press.

Berger, M. J. (1984). Adaptive mesh refinement for hyperbolic
partial differential equations. Journal of Computational Physics,
53, 484–512.

Bickel, W. K. (2015). Discounting of delayed rewards as an
endophenotype. Biological Psychiatry, 77(10), 846–847.

Cappe, O., Godsill, S. J., & Moulines, E. (2007). An overview of
existing methods and recent advances in sequential Monte Carlo.
Proceedings of the IEEE, 95(5), 899–924.

Cavagnaro, D. R., Aranovich, G. J., McClure, S. M., Pitt, M. A.,
& Myung, J. I. (2016). On the functional form of temporal
discounting: An optimized adaptive test. Journal of Risk &
Uncertainty, 52, 233–254.

Cavagnaro, D. R., Gonzalez, R., Myung, J. I., & Pitt, M. A.
(2013a). Optimal decision stimuli for risky choice experiments:
An adaptive approach. Management Science, 59(2), 358–375.

Cavagnaro, D. R., Myung, J. I., Pitt, M. A., & Kujala, J. V.
(2010). Adaptive design optimization: Amutual information based
approach to model discrimination in cognitive science. Neural
Computation, 22(4), 887–905.

Cavagnaro, D. R., Pitt, M. A., Gonzalez, R., & Myung, J. I. (2013b).
Discriminating among probability weighting functions using
adaptive design optimization. Journal of Risk and Uncertainty, 47,
255–289.

Cavagnaro, D. R., Pitt, M. A., & Myung, J. I. (2011). Model
discrimination through adaptive experimentation. Psychonomic
Bulletin & Review, 18(1), 204–210.

Chaloner, K., & Verdinelli, I. (1995). Bayesian experimental design:
A review. Statistical Science, 10(3), 273–304.

Cohn, D., Atlas, L., & Ladner, R. (1994). Improving generalization
with active learning. Machine Learning, 15(2), 201–221.

Cornsweet, T. N. (1962). The staircase-method in psychophysics. The
American Journal of Psychology, 75(3), 485–491.

Cover, T. M., & Thomas, J. A. (1991). Elements of information
theory. Hoboken: Wiley.

DiMattina, C., & Zhang, K. (2008). How optimal stimuli for
sensory neurons are constrained by network architecture. Neural
Computation, 20, 668–708.

DiMattina, C., & Zhang, K. (2011). Active data collection for efficient
estimation and comparison of nonlinear neural models. Neural
Computation, 23, 2242–2288.

Doucet, A., De Freitas, N., & Gordon, N. (2001). Sequential Monte
Carlo methods in practice. Berlin: Springer.

Ebert, J. E., & Prelec, D. (2007). The fragility of time: Time-
insensitivity and valuation of the near and far future.Management
Science, 53(9), 1423–1438.

Farrell, S., & Lewandowsky, S. (2018). Computational modeling of
cognition and behavior. Cambridge: Cambridge University Press.

Feeny, S., Kaiser, P. K., & Thomas, J. P. (1966). An analysis of
data gathered by the staircase-method. The American Journal of
Psychology, 79(4), 652–654.

Garcia-Perez, M. A. (1998). Forced-choice staircases with fixed step
sizes: Asymptotic and small-samples properties. Vision Research,
38, 1861–1881.

Green, L., & Myerson, J. (2004). A discounting framework for choice
with delayed and probabilistic rewards. Psychological Bulletin,
130, 769–792.

Gu, H., Kim,W., Hou, F., Lesmes, L., Pitt, M. A., Lu, Z.-L., &Myung,
J. I. (2016). A hierarchical Bayesian approach to adaptive vision

testing: A case study with the contrast sensitivity function. Journal
of Vision, 16(6), 15, 1–17.

Hou, F., Lesmes, L., Kim, W., Gu, H., Pitt, M. A., Myung, J. I., &
Lu, Z.-L. (2016). Evaluating the performance of the quick CSF
method in detecting contrast sensitivity function changes. Journal
of Vision, 16(6), 18, 1–19.

Hsu, M., Bhatt, M., Adolphs, R., Tranel, D., & Camerer, C. F. (2005).
Neural systems responding to degrees of uncertainty in human
decision-making. Science, 310(5754), 1680–1683.

King-Smith, P. E., Grigsby, S. S., Vingrys, A. J., Benes, S. C.,
& Supowit, A. (1994). Efficient and unbiased modifications of
the quest threshold method: Theory, simulations, experimental
evaluation and practical implementation. Vision Research, 34,
885–912.

Kontsevich, L. L., & Tyler, C. W. (1999). Bayesian adaptive
estimation of psychometric slope and threshold. Vision Research,
39, 2729–2737.

Krause, F., & Lindemann, O. (2014). Expyriment: A python library
for cognitive and neuroscientific experiments. Behavior Research
Methods, 46(2), 416–428.

Kujala, J. V., & Lukka, T. J. (2006). Bayesian adaptive estimation:
The next dimension. Journal of Mathematical Psychology, 50(4),
369–389.

Laibson, D. (1997). Golden eggs and hyperbolic discounting. The
Quarterly Journal of Economics, 112(2), 443–478.

Lee, M. D., & Wagenmakers, E.-J. (2014). Bayesian cognitive
modeling: A practical course. Cambridge: Cambridge University
Press.

Lejuez, C. W., Read, J. P., Kahler, C. W., Ramsey, J. B., Stuart, G. L.,
& et al. (2002). Evaluation of a behavioral measure of risk-taking:
The balloon analogue risk task (bart). Journal of Experimental
Psychology: Applied, 8(2), 75–85.

Lesmes, L. A., Jeon, S.-T., Lu, Z.-L., & Dosher, B. A. (2006).
Bayesian adaptive estimation of threshold versus contrast external
noise functions: The quick T vC method. Vision Research, 46,
3160–3176.

Levy, I., Snell, J., Nelson, A. J., Rustichini, A., & Glimcher, P. W.
(2010). Neural representation of subjective value under risk and
ambiguity. Journal of Neurophysiology, 103, 1036–2047.

Lewi, J., Butera, R., & Paninski, L. (2009). Sequential optimal design
of neurophysiology experiments. Neural Computation, 21, 619–
687.

Lindley, D. V. (1956). On a measure of the information provided
by an experiment. Annals of Mathematical Statistics, 27(4), 986–
1005.

Lorenz, R., Pio-Monti, R., Violante, I. R., Anagnostopoulos, C.,
Faisal, A. A., Montana, G., & Leech, R. (2016). The auto-
matic neuroscientist: A framework for optimizing experimental
design with closed-loop real-time fmri. NeuroImage, 129, 320–
334.

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). Opensesame: An
open-source, graphical experiment builder for the social sciences.
Behavior Research Methods, 44(2), 314–324.

Mazur, J. E. (1987). An adjusting procedure for studying delayed
reinforcement. Commons, ML.; Mazur, JE.; Nevin, JA.

McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G.,
& Cohen, J. D. (2007). Time discounting for primary rewards.
Journal of Neuroscience, 27(21), 5796–5804.

Müller, P. (1999). Simulation-based optimal design. In Berger, J. O.,
Dawid, A. P., & Smith, A. F. M. (Eds.) Bayesian statistics, (Vol. 6,
pp. 459–474). Oxford: Oxford University Press.

Müller, P., Sanso, B., & De Iorio, M. (2004). Optimal Bayesian
design by inhomogeneous Markov chain simulation. Journal of
the American Statistical Association, 99(467), 788–798.

Behav Res

Myung, I. J. (2003). Tutorial on maximum likelihood estimation.
Journal of Mathematical Psychology, 47, 90–100.

Myung, J. I., Cavagnaro, D. R., & Pitt, M. A. (2013). A
tutorial on adaptive design optimization. Journal of Mathematical
Psychology, 57, 53–67.

Peirce, J. W. (2007). Psychopy—psychophysics software in python.
Journal of Neuroscience Methods, 162(1-2), 8–13.

Peirce, J. W. (2009). Generating stimuli for neuroscience using
psychopy. Frontiers in Neuroinformatics, 2, 10.

Rose, R. M., Teller, D. Y., & Rendleman, P. (1970). Statistical
properties of staircase estimates. Perception & Psychophysics,
8(4), 199–204.

Samuelson, P. A. (1937). A note on measurement of utility. The
Review of Economic Studies, 4(2), 155–161.

Settles, B. (2009). Active learning literature survey. University of
Wisconsin-Madison Computer Sciences Technical Report TR1648
(http://digital.library.wisc.edu/1793/60660).

Van-DenBos, W., & McClure, S. E. (2013). Towards a general model
of temporal discounting. Journal of the Experimental Analysis of
Behavior, 99, 58–73.

Vandekerckhove, J., Rouder, J. N., & Krushke, J. K. (2018).
Editorial: Bayesian methods for advancing psychological science.
Psychonomic Bulletin & Review, 25, 1–4.

Vincent, B. T. (2016). Hierarchical Bayesian estimation and
hypothesis testing for delay discounting tasks. Behavior Research
Methods, 48, 1608–1620.

Wallsten, T. S., Pleskac, T. J., & Lejuez, C. W. (2005). Modeling
behavior in a clinically diagnostic sequential risk-taking task.
Psychological Review, 112(4), 862–880.

Watson, A. B., & Pelli, D. G. (1983). Quest: A Bayesian adaptive
psychometric method. Perception & Psychophysics, 33(2), 113–
120.

Wichmann, F. A., & Hill, N. J. (2001). The psychometric
function: I. fitting, sampling, and goodness of fit. Perception &
Psychophysics, 63(8), 1293–1313.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://digital.library.wisc.edu/1793/60660

	ADOpy: a python package for adaptive design optimization
	Abstract
	Introduction
	Adaptive design optimization (ADO)
	ADOpy
	Overview
	Prerequisites
	Installation
	Module structure
	Basic usage
	Defining a task
	Defining a model
	Defining grids
	Initializing an ADO engine
	Simulating responses

	Practical issues

	Tasks and Models implemented in ADOpy
	Psychometric function estimation
	Delay discounting task
	Choice under risk and ambiguity task

	Integrating ADOpy with experiments
	Conclusion
	Appendix A: Defining grids for delay discounting task
	Appendix B: ADOpy simulations
	Appendix B: ADOpy simulations
	Psychometric function estimation
	Delay discounting task
	Choice under risk and ambiguity task
	Appendix C: Fully worked-out python script for delay discounting task
	Appendix C: Fully worked-out python script for delay discounting task
	References

