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Criminal convictions require proof that a prohibited act was
performed in a statutorily specified mental state. Different legal
consequences, including greater punishments, are mandated for
those who act in a state of knowledge, compared with a state of
recklessness. Existing research, however, suggests people have
trouble classifying defendants as knowing, rather than reckless,
even when instructed on the relevant legal criteria. We used a
machine-learning technique on brain imaging data to predict, with
high accuracy, which mental state our participants were in. This
predictive ability depended on both the magnitude of the risks and
the amount of information about those risks possessed by the
participants. Our results provide neural evidence of a detectable
difference in the mental state of knowledge in contrast to reckless-
ness and suggest, as a proof of principle, the possibility of inferring
from brain data in which legally relevant category a person belongs.
Some potential legal implications of this result are discussed.

neurolaw | mental states | knowledge | recklessness | elastic-net model

Imagine you are a juror in the trial of a defendant who admits to
having transported a suitcase full of drugs across international

borders. However, you do not know how aware she was of the
presence of drugs in that suitcase. The degree of awareness she
had at the time she crossed the border will make a difference to
her criminal culpability and, in turn, to the amount of punish-
ment she faces.
Conviction for a crime requires proof beyond a reasonable

doubt of both the crime’s actus reus—a set of statutorily specified
acts, results, and circumstances, such as crossing a border while
in possession of drugs—and the crime’s mens rea—a set of statu-
torily specified mental states including, for instance, knowledge that
one is in possession of drugs when one crosses the border. The
Model Penal Code (MPC), which is followed in many jurisdictions
in the United States, distinguishes among four different psycho-
logical states a person can be in with respect to each element of a
crime’s actus reus: purpose, knowledge, recklessness, and negli-
gence. The Code also specifies that these decrease in culpability: it
is worse, for instance, to cross the border knowing you have drugs
(as one is if sure that one has them) than to do so while reckless
with respect to that fact (as one is if aware of a “substantial and
unjustifiable risk” that one is carrying drugs, but uncertain that one
is) (MPC §2.02). The MPC’s four-part taxonomy, however, relies
on at least two assumptions: (i) people actually differ psychologi-
cally in the ways that the MPC sets out; and (ii) average people
(potential jurors) can effectively categorize real-world mental states
in accordance with the Code’s definitions (1). Considering the
dramatic effects that different mental-state assignments can have
on the freedom of criminal defendants, it is surprising that very
little research has been done to verify these assumptions (1, 2).
Shen et al. (1), setting out to test the second assumption,

recruited participants from different parts of the United States,
gave them different crime scenarios, and asked them to identify

which of the four mental states the protagonist of the scenario
was in. The research revealed that, although people were quite
good at distinguishing between intentional, negligent, and
blameless (no culpability) states, their ability to distinguish be-
tween a knowing and a reckless state was surprisingly poor, with
people confusing the two about 45% of the time. Nevertheless, in
a real court, to judge someone to have knowingly rather than
recklessly committed a criminal act can make an enormous differ-
ence in punishment. In fact, it can be, literally, a matter of life and
death: a defendant can be eligible for the death penalty if found to
have performed a lethal act knowing it would kill rather than merely
aware of a substantial risk that it would. With an individual’s free-
dom and potentially life hanging in the balance, it seems necessary
to find multiple and reliable ways to facilitate accurate sorting
between knowing and reckless mental states. To this end, scientific
evidence for (or against) biologically based and brain-based dis-
tinctions of knowing and reckless mental states, and the boundary
that may separate them, could help us either to refine or to reform
the ways criminal responsibility is assessed.
Currently, the most frequently used tool to study the neural

correlates of “mental states” is functional magnetic resonance
imaging (fMRI) (3). fMRI analysis has been recently used in the
context of the law, from trying to predict psychopathy (4) to
trying to understand what goes on in the brains of jurors when
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they are deciding whether to punish (5). However, no fMRI
studies of which we are aware have attempted to determine
whether and how the “culpable mental states,” as defined by the
MPC, map onto differential activations in the human brain.
Given that the main distinction between the knowing and

reckless mental states relies on the differential perception of
probabilities and uncertainty associated with an outcome (if
knowing you are “practically certain” of the outcome, i.e., P = 1,
whereas if reckless you are aware of a “substantial” risk but
uncertain, i.e., 0 < P < 1), potential brain areas differentially
associated with the knowing or reckless mental states could be
areas previously found in the neuroeconomics and decision-
making literature to be implicated in encoding probability or
uncertainty and risk (6–11). These areas include the posterior
parietal cortex (7, 12), the posterior cingulate cortex (12, 13), the
medial and lateral prefrontal cortex (6, 12), the thalamus (7, 8),
and the insula (9, 10). However, these studies almost always use
simple lotteries or gambling tasks (e.g., choice between two
decks of cards; guessing from which urn a ball came from) and
do not portray a legally relevant knowing vs. reckless situation.
Although typical fMRI analyses are descriptive in nature and

lack predictive power, new methods are emerging that try to find
multiregional brain activity patterns that collectively predict a
specific cognitive condition or individual characteristic (14–20).
This is a particularly challenging task, given that, with fMRI data,
the number of predicting variables is generally much higher than
the number of observations, and hence there is a risk of pro-
ducing either computationally intractable or strongly overfit
models (15, 21, 22). A new method has been suggested that tries
to tackle this problem by using elastic-net (EN) regression. EN
regression uses a mix of L1 and L2 regularization to prevent
overfitting, while at the same time ensuring that the final model
includes all of the relevant brain regions (14, 15, 21). This new
method could potentially be applied to predict the MPC’s “culpable”
mental states based on a person’s fMRI data.
In this study, we attempt to understand whether knowledge

and recklessness are actually associated with different brain
states, and which are the specific brain areas involved. Moreover,
we want to know whether it is possible to predict, based on brain-
imaging data alone (using EN regression), in which of those
mental states the person was in at the time the data were obtained.
We asked 40 participants to undergo fMRI while they decided
whether to carry a hypothetical suitcase, which could have con-
traband in it, through a checkpoint. We varied the probability that
the suitcase they carried had contraband, so that participants
could be in a knowing situation (they knew the suitcase they were
carrying had contraband) or a reckless situation (they were not
sure whether there was contraband in it, but were aware of a risk
of varying magnitude). We found that we were able to predict with
high accuracy whether a person was in a knowing or reckless state,
and this was associated with unique functional brain patterns.
Interestingly, this high predictive ability strongly depended on the
amount of information participants had available at the time the
information about the risks was presented.

Materials and Methods
Experimental Details.
Participants. Forty participants were recruited according to a protocol ap-
proved by the Virginia Tech Institutional Review Board. Written informed
consent was obtained from all participants. From these, one-half of the par-
ticipants (n = 20; 10 females) were placed in the Contraband-First condition
(see Experimental paradigm for details), whereas the other half (n = 20; 10
females) were placed in the Search-First condition. The mean age (± SD) for
each group was 26.9 ± 10.2 and 32.9 ± 11.9 y old, respectively.
Experimental paradigm. Participants were told a cover story about carrying
“valuable content” (such as documents, microchip processors, etc.), here
referred to as “contraband,” through a checkpoint (Fig. S1). Note that, al-
though the instructions did not use the term contraband so as not to dis-
courage participants that were averse to illegal behavior, we use the term

here for convenience. In each trial, they were shown between one and five
suitcases, only one of which actually contained contraband, and were asked
whether they were willing to carry a suitcase randomly chosen from the
group (Fig. S1A, Left). Hence, the number of suitcases shown represented
the risk of carrying the target suitcase with contraband (Contraband Risk): if
only one suitcase was presented, then the participants knew with certainty
that the suitcase had contraband in it (knowing situation, Pcontr = 1),
whereas if more than one suitcase was presented, they were not sure whether
the suitcase they were assigned contained contraband, but were aware of the
risk (reckless situation, with Pcontr = 0.5, 0.33, 0.25, or 0.2 of having contraband
in the suitcase). Participants also had different probabilities of being caught
(Search Risk), with the probability of being searched at the checkpoint ranging
from Psearch = 0 to 0.8 (symbolized by 10 tunnels, in which a proportion of
them could be occupied by a “guard”; Fig. S1A, Right). One-half of the par-
ticipants (n = 20) saw the probability of carrying a suitcase with contraband
after already being shown the search risk (Search-First group), whereas the
other half started by seeing the suitcases before being shown the search risk
(Contraband-First group). See Supporting Information for details.

Data Analysis. See Supporting Information for details on the behavioral and
fMRI data analyses. To perform the classification, we used an EN regression.
The goal of this analysis was to understand whether, given a particular brain
activation state, we could correctly predict which mental state the participant
was in at the time the brain data were collected. Namely, we wanted to know
whether we could disentangle whether the participant was in a knowing or a
reckless situation. To achieve that, we used as a classifier the EN regression (see
Fig. S2 and Supporting Information for step-by-step details). To assess the
“significance” of the results, correcting for finite sample sizes (23), we ran a
permutation test (Supporting Information).

Results
Behavioral Results. Behavioral data are presented in Fig. 1. Tests
of within-subject effects from a mixed-model ANOVA revealed
main effects for both Contraband Risk [F(4,152) = 20.7, P < 0.001]
and Search Risk [F(4,152) = 131.8, P < 0.001] on the decision to
carry the suitcase. Regardless of condition (Contraband-First or
Search-First), as the likelihood of a suitcase containing contraband
increased, decisions to carry the suitcase decreased. Similarly, re-
gardless of condition, as the likelihood of being searched increased,
decisions to carry the suitcase decreased. Furthermore, there was a
significant Search Risk vs. Contraband Risk interaction [F(16,608) =
10.2, P < 0.001]. A significant interaction was also observed be-
tween Search Risk and Condition [F(4,152) = 3.27, P = 0.013] but not
Contraband Risk and Condition [F(4,152) = 1.23, P = 0.302], and a
significant Contraband Risk by Search Risk by Condition interac-
tion was observed [F(16,608) = 3.39, P = 0.002]. Analysis revealed
that the magnitude of the main effect of Search Risk was contin-
gent on the order in which risk information was received. When
collapsing across Contraband Risk, data show that, for identical
degrees of Search Risk (00, 20, 40, 60, or 80%), seeing the search
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Fig. 1. Behavior summary. (A) Behavior for n = 20 participants seeing the
contraband risk first (Contraband-First condition). The percentage of times the
participant decided to carry the suitcase is on the y axis, whereas the Search Risk
(proportion of tunnels occupied by a guard) is on the x axis. Colors code the
Contraband Risk (number of suitcases presented, e.g., one suitcase: Pcontr = 1;
two suitcases: Pcontr = 0.5, etc.). (B) Behavior for n = 20 participants seeing the
search risk first (Search-First condition). Note the presence of a Search Risk by
Contraband Risk interaction in both conditions, but stronger in the Search-First
condition. Error bars represent SEM. See Table S1 for results of logistic regression.
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risk before contraband risk resulted in fewer decisions to carry
(mean ± SD = 99 ± 0.01%, 97 ± 0.02%, 76 ± 0.07%, 40 ± 0.23%,
and 29 ± 0.16%), compared with seeing the Search Risk after the
Contraband Risk (100 ± 0.00%, 99 ± 0.01%, 91 ± 0.04%, 59 ±
1.2%, and 24 ± 1.1%, respectively). This shows that, although the
content and the level of risk associated with a single decision was
identical, the order in which the information was received signifi-
cantly altered choice behavior. Specifically, seeing the search risk
before seeing the contraband suitcases typically decreased the
choice to carry contraband suitcases. Similar results were obtained
using a logistic regression (Supporting Information). As the order in
which information was presented significantly affected behavior,
these two groups/conditions will be analyzed separately. Finally,
note that fewer decisions to carry contraband are made when in-
dividuals are in knowing as opposed to increasingly reckless situa-
tions [observe one-suitcase [red] trials relative to two-, three-, four-,
and five-suitcase trials], indicating that the participant is indeed
aware that he/she is carrying contraband.

Classifier Performance. Using the brain-imaging data from the
participants in the Search-First condition (and only the trials in
which participants decided to carry the suitcase), we were able to
predict, with relatively high accuracy, whether the brain-imaging
data corresponded to a knowing (Contraband Risk: Pcontr = 1) or
a reckless (Pcontr = 0.2) situation (Fig. 2). The EN classifier had
an out-of-sample average area under the curve (AUC) value of
0.789 (AUC values close to 1 indicate “perfect” classification,
and close to 0.5 suggest random classification) and an average
correct classification rate (CCR) of 71% (Fig. 2A). These values
are significantly above chance, with P values obtained through a
permutation test equal to Pperm = 0.005 (i.e., only 1 in 200 models
run with shuffled labels had an AUC or CCR value as high or
higher than these; see Materials and Methods and Supporting In-
formation for details). This high accuracy was maintained even at
the single-subject level and when using a more stringent, double–
cross-validation procedure (see Supporting Information for details).
We find several areas in the brain predictive of being in a knowing
situation, namely dorsomedial prefrontal cortex (dmPFC) and
medial orbitofrontal cortex (mOFC), middle and anterior cingulate
cortex (ACC), bilateral superior temporal gyrus/temporoparietal
junction (TPJ) and bilateral anterior insula (Fig. 2B and Table S2).
Areas more predictive of being in a reckless situation were mainly
in the occipital cortex (Fig. 2C). These brain areas were differen-
tially activated in a knowing and reckless situation, and, together,
the brain activity in them allowed predicting (significantly above
chance) in which situation the person was.
If we do the same analysis using brain imaging data from the

participants in the Contraband-First condition (i.e., at the time
the contraband risk was being shown they had not seen the
search risk yet), the results change. The accuracy of the EN
classifier in distinguishing between the knowing and reckless
condition drops to an out-of-sample average AUC value of 0.287
(Pperm = 1; Fig. 3A) and an average correct classification rate of
32.1% (Pperm = 1). For the knowing situation, the (right) TPJ also
appears, and for the reckless situation identical occipital areas
appear (Fig. 3B and Table S2). Note, however, that the coeffi-
cients associated with these voxels/areas have relatively small
survival rates, indicating that, for many of the model runs, none of
these voxels was very predictive of being in one state or another.
Although the visual information presented in both conditions is
identical, the lower predicting capability of the EN classifier in
these data compared with the Search-First condition indicates that
it is not the visual information in itself that drives the higher pre-
dictability of the model, and also that having or lacking complete
information about both the contraband risk and the probability of
getting caught (search risk) changes some of the brain patterns (or
at least the strength of the signal) associated with it.

The results obtained until now used Pcontr = 0.2 (five suitcases
presented) as the recklessness category. To analyze what hap-
pens to the EN model’s classification accuracy when different
contraband risks are used, we performed the same analysis but
comparing the knowing situation (Contraband Risk: Pcontr = 1)
with different forms of recklessness, varying with the Contraband
Risk (Pcontr = 0.5, 0.33, 0.25, or 0.2; Fig. 4). We find that, for the
Search-First condition, the EN classifier comparing the knowing
with most other recklessness states also allowed for a signifi-
cantly better than chance separation ability: for the EN classifier
distinguishing one vs. three suitcases (Pcontr = 1 vs. Pcontr = 0.33),
the average AUC was 0.924 and the CCR was 79.6% (Pperm = 0);
and for the EN separating one vs. four suitcases (Pcontr = 1 vs.
Pcontr = 0.25), the average AUC was 0.82 and the CCR was
75.7% (Pperm = 0). The performance of the EN classifier con-
trasting knowing with the recklessness state more near the
knowing situation (Pcontr = 1 vs. Pcontr = 0.5) was slightly worse,
with an average AUC value of 0.678 and a CCR of 55.3% (Pperm =
0.13 and Pperm = 0.11, respectively). On the other hand, for the
Contraband-First condition, the EN classifier does not perform
better than chance in distinguishing knowing from any of the
recklessness situations: for Pcontr = 0.5, the average AUC was
0.259 and the CCR was 32.2% (Pperm = 1 for both); for Pcontr =
0.33 (one vs. three suitcases), the average AUC was 0.38 and the
CCR was 35.3% (Pperm = 0.96 and Pperm = 0.85, respectively); and
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Fig. 2. The K/R distinction, for the Search-First condition. These results were
obtained based on the brain state at the time that the contraband risk is
revealed (suitcases shown), when the contraband risk is presented after the
search risk (Search-First condition, n = 20). (A, Top) Distribution of cross-
validated areas under the curve (AUCs). AUC values close to 1 indicate
“perfect” classification, whereas those close to 0.5 suggest random classifi-
cation. Forty iterations of a fivefold cross-validated EN regression were
performed, resulting in the 200 AUC calculations plotted in the histogram
(mean out-of-sample AUC = 0.79). (Bottom) Example of one receiver-oper-
ating characteristic (ROC) curve obtained, from which an AUC is drawn. The
dashed line represents a “curve” from a model that would perform at
chance level (hence the area under this “curve” is 50%, i.e., the AUC would
be 0.5). ROC curves consistently above this dashed line are associated with
AUC values higher than 0.5. (B) Areas predictive of being in a knowing sit-
uation (Pcontr = 1). Represented is the (signed) survival rate for the voxels.
The “signed survival rate” for a voxel is the proportion of times this voxel
was used in the EN classifier (i.e., got coefficient values different from zero),
multiplied by the sign of the average beta value for this voxel (see Sup-
porting Information for details). Hence, absolute survival rate values closer
to 1 mean that the voxel “survives” most of the cross-validated runs of the
EN algorithm, indicating that this voxel is relevant in distinguish a knowing
(Pcontr = 1) from a reckless (Pcontr = 0.2) situation. Voxels with a negative
signed survival rate are shown, indicating regions predictive of being in the
knowing situation (the base group in our model). (C) Areas predictive of
being in a reckless situation (Pcontr = 0.2; voxels with a positive survival rate).
Each voxel’s (signed) survival rate is overlaid on a sagittal (B, Top Left, x = 2;
C, Top, x = 14), coronal (B, Top Right, y = 20), or axial (B, Bottom, z = −2 Left,
z = 26 Right; C, z = 6) section of a 152-participant average T1 SPM brain
template (minimum survival rate for the cluster’s peak voxel of 0.5). The
xjView program was used to display all of the brain figures.
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for Pcontr = 0.25, the average AUC was 0.349 and the CCR was
34.2% (Pperm = 0.98 and Pperm = 0.92, respectively). The capability
of the EN model to distinguish between a knowing and a reckless
situation thus depended on both the degree of probability (Con-
traband Risk) and also the amount of information available to the
participant (in terms of Search Risk) at the time that the knowing
or reckless situation was being presented.
See Supporting Information for measures of single-subject

precision, double–cross-validation, and several control analyses
(Figs. S3–S7).

Discussion
In this paper, we set out to discover whether knowing and
reckless mental states, as defined by the MPC, correspond to de-
tectable different states in the human brain. Moreover, we wanted
to know whether we could predict which of those mental states the
person was in based only on the corresponding brain-imaging data.
Using EN regression on brain-imaging data of people exposed to
knowing or reckless scenarios, we found that knowing and reckless
are indeed associated with distinct brain states. Moreover, it was
possible to predict, with relatively high accuracy, which mental state
the person was in. This study is a first step in understanding how the
legally defined concepts of “knowledge” and “recklessness” map
onto different brain states and shows, as a proof of principle, that it
is possible to predict which legally defined mental state a person is
in based only on imaging data.
The fact that our EN model was able to distinguish between a

knowing or reckless state with higher than chance levels (although
far from perfect) indicates that, at least for some conditions, the
knowing and reckless states may indeed be correlated with, and so
possibly realized by distinct states of the human brain. This pre-
dictive ability was consistently found for various recklessness
states. However, for the recklessness state more near the knowing

condition (Pcontr = 0.5), the accuracy, even though relatively high,
was not significantly better than chance. This suggests that the
knowing/reckless (K/R) boundary may be more of a continuum,
and that when recklessness involves awareness of probability values
closer to those involved in the knowing situation, the K/R boundary
may be at least difficult to distinguish, and perhaps even blurred.
Also, the capacity of our model to distinguish the K/R states
strongly depended on participants already having information
about the risk of being searched. Together, these results are
consistent with the idea that the human brain has a K/R boundary,
but exactly how it is drawn may depend both on the distance be-
tween the knowing and reckless situations and on the amount of
information available to the person (in terms of search risk) at the
time the K/R situation is happening.
Observing the brain areas that were repeatedly used by the

model to predict which situation the participant was in sheds
light on what brain areas are differentially associated with a
knowing and a reckless “mental state.” One of the areas that
appeared more predictive of being in a knowing situation was the
anterior insula. This is in line with previous experiments impli-
cating the anterior insula in risk and uncertainty representation
(9, 10, 24). The insula was still differentially active even after
taking into account potential effects related with “risk” in terms
of uncertainty in reward, which is in accordance with studies
suggesting that it may have a general role in uncertainty that is
independent of the effects of reward (8, 10, 24). Another area
more involved in knowing than in reckless states was the dor-
somedial prefrontal cortex. The prefrontal cortex is generally
associated with executive decisions and making computations
(10, 25), including also the assessment of probabilities and un-
certainty (10, 12). Interestingly, in our experiment this area
seemed to be more engaged when the participants already had
seen the search risk associated with the trial. This suggests that
participants may be waiting to have all of the information
available to them to compute their decision. Finally, we also
obtained bilateral TPJ, which is known to be associated with
moral decisions (26). Areas specifically more predictive of being
in a reckless situation include the occipital cortex. Although this
may be related to simple visual effects specific to our task, as
more suitcases were presented on the screen in recklessness
scenarios, these areas have also been associated with higher
uncertainty in current information (likelihood), which is higher
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in a reckless scenario (10). Future studies may tell if the areas we
found predictive of being in a knowing or reckless scenario gen-
eralize to other scenarios, for example, knowingly or recklessly
evading taxes.
Although the EN model was able to classify with high accuracy

a knowing or a reckless state in the Search-First condition, in the
Contraband-First condition the model did not perform better
than chance (even though the visual information was identical).
This effect of order of presentation of information was also seen
in behavior: seeing the search risk before contraband risk
resulted in fewer decisions to carry. It is well known that human
decision-making can be influenced by the manner in which options
are presented (27, 28). Our results suggest that this is true not only
for decisions involving multiple options but also for differing pre-
sentations of information related to a single decision. Alternatively,
it may be that participants are waiting to have all of the informa-
tion available to them to compute the associated contraband and
search risks.
The following question can then be raised: Do the brain areas

we are seeing correspond exclusively to knowing vs. reckless, or
are they just representing the search risk (or their interaction)?
In the inputs given to the model to distinguish K/R, search risk
had already been averaged out [modeled in different betas on
the same general linear model (GLM)]. Furthermore, if we an-
alyze only the trials in which no search risk was present the same
brain areas appear, indicating that they are differentially active
in knowing vs. reckless even when no search risk exists (Sup-
porting Information). Finally, extracting out the effects associated
with the probability of being caught (i.e., searched while carrying
contraband) still leads to the same results. Nevertheless, already
having the information about search risk or not affects both the
behavioral and the imaging results, hence search risk does matter
in some way. In the real world, the probability of getting caught
affects people’s decision to commit, or not, a crime. It is then
quite possible that the awareness of one’s risk of being caught
affects the manifestation of the culpable brain states themselves.
Future studies could aim at understanding more precisely the
effect of presentation of information and of search risk in the
knowing and reckless brain states.
A word of caution: even though increased activations in the

anterior insula, PFC, and TPJ were associated with a knowing
scenario, this does not mean that this particular brain pattern/
mental state could not appear in other situations, totally unrelated
to the K/R distinction. For example, it may well be that they appear
when assessing the probability of one event even if that event has no
legal relevance. What it does mean is that, if the subject was either
in a state of knowledge or reckless, then having this particular brain
state increased the chances that the participant was in a state of
knowledge (in contrast to recklessness).
To what extent is the difference between knowledge and

recklessness, as defined by the law, the same as the difference
between certainty and uncertainty? People are considered to act
knowingly, under the law, when they are certain that their con-
duct is accompanied by a specific circumstance (in our experi-
ment, that the suitcase contained contraband). In contrast, they
are considered to act recklessly if they are aware of a “substantial
and unjustifiable” risk that their conduct is accompanied by that
circumstance, but unsure of it. So, the distinction between knowl-
edge and recklessness is closely related to the ordinary distinction
between certainty and uncertainty.
However, knowledge and recklessness are both likely to have

more elements than certainty and uncertainty, respectively, have.
There will be cases of certainty that are not cases of knowledge in
the legal sense, and cases of uncertainty that are not cases of
recklessness. The knowing and reckless mental states generally
include an interpersonal relation, and they often include a moral
dimension. The brain areas we found support this notion. Specifi-
cally, although the anterior insula has traditionally been implicated

in uncertainty representation (among other things), albeit in non-
legally relevant settings (9, 10, 24), the TPJ has been more generally
associated with moral decisions (26, 29). Note also that these areas
appear even after abstracting out effects associated with Variance
in Reward. Future studies could deploy a similar experimental
setup and range of probabilities and choices but in a gambling
scenario, or a scenario involving taking a ball from two urns, to see
if similar areas are activated. Our prediction would be that, al-
though the uncertainty-specific areas might be maintained (insula),
others would not (e.g., TPJ).
The participants in this experiment, although more diverse

than typical college student subjects in such experiments (30),
are still not representative of the US population, let alone of the
general human population. Limitations on generalizing the re-
sults obtained by this classifier include the fact that we have a
small sample size (n = 40) and that the participant pool is re-
stricted to the Roanoke/Blacksburg (Virginia) area. Furthermore,
our experiment was done in a laboratory setting (with no real risk
of going to jail), and participants were given the exact probabilities
of events, whereas this may not be the case in “real life.” Never-
theless, these results show a proof of concept: the knowledge and
reckless mental states do seem to have distinct neural correlates,
at least for some people and in a situation like the one portrayed
in our experiment, and these neural correlates can be used to infer
which state the person was in. More studies, from different inde-
pendent laboratories, and with a broader participant pool are
needed to analyze the generalizability of these findings.
Future studies could also look at the other MPC mental states

not analyzed here, namely Purposeful and Negligent. Although
we have shown here that a recklessness mental state could be dis-
tinguished from a knowing mental state, to confirm that recklessness
is a mental state on its own future studies should see whether
recklessness can be distinguished from Negligence using brain
data alone. Similarly, future studies could look at the brain dis-
tinction between knowing and purposeful. The fact that typical
jurors seem to be able to make these distinction behaviorally
(1, 2) suggests this would be possible.
We conclude with some remarks about the potential legal

relevance of our findings, recognizing that under no circum-
stances should legal practice be altered in the face of any single
study, or even a small number of supporting studies. We want to
first emphasize the negative; there are various tempting con-
clusions to reach that should be resisted. In particular, it would
be absurd to suggest, in light of our results, that the task of
assessing the mental state of a defendant could or should, even in
principle, be reduced to the classification of brain data. For one
thing, our capacity to classify participants’ mental states depended
on the collection of brain data at the time of a potentially criminal
act. Obviously, in most cases, when someone is committing a crime
they are not doing so while inside a scanner. We do not know
whether it is possible, even in principle, to classify a person’s
mental state at a time that precedes the collection of brain data by
minutes, hours, days, or even years, as is necessary in criminal
trials. As it stands, our classifier represents a proof of concept, and
not yet a usable tool. Future studies might assess whether this
mental state can be recreated, for example by showing pictures of
the circumstances of the potential crime, and whether a recreation
of this kind would elicit particular brain states.
For another thing, our classifier’s ability to predict the mental-

state category of our participants was entirely dependent on our
ability to classify the mental states of the participants in the
“training” dataset without appeal to brain data. That is, our
ability to classify on the basis of brain data was parasitic on our
ability to conclude that, for instance, a participant who chose to
carry the suitcase when only one suitcase was offered to him
knew that he was carrying contraband. That conclusion was not
reached through a study of his brain activations but, instead,
through the commonsense interpretation of human behavior so
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familiar from everyday life. In addition, there are good reasons
to believe that the legitimacy of our verdicts in criminal cases
depends crucially on the fact, and the appearance, that the jury is
making an unmediated judgement about the culpability of the
defendant, rather than deferring to the results dictated by any
nonhuman tool. That would be lost were anyone but the jury
asked to assess the defendant’s mental state.
However, this is not to suggest that our results have no legal

significance. Legal scholars have argued about whether legally
relevant mental states, such as those defined in the MPC, are
arbitrary constructs or have some underlying resonance with
actual psychological states. If the mental state categories are
arbitrary constructs, then we should worry that differential
punishments driven by differential mental-state classifications
are equally arbitrary. Additionally, this is a source of potential
worry, for arbitrarily constructed categories are at risk for interfering
with the task of drawing merited distinctions; they sometimes, in-
stead, may reflect biases or can even be used to serve the ends of the
powerful. Our results suggest that the legally significant conceptions
of knowledge (certainty that a particular circumstance exists) and
recklessness (awareness of a possibility or probability that it exists)
are distinctly represented in the human brain, and generalize exist-
ing results from the decision-making and neuroeconomics literature
into the legal domain. These findings could therefore be the first
steps toward demonstrating that legally defined (and morally sig-
nificant) mental states may reflect actual, detectable, psychological
states grounded in particular neural activities. Whether a reckless
drug courier should be punished any less than a knowing one will of
course always remain a normative question. However, that question
may be informed by comfort that our legally relevant mental-state
categories have a psychological foundation.
Also, even if several future studies confirm what we have

observed here, that knowledge and recklessness are associated
with different brain states, if human jurors cannot distinguish
them behaviorally, then one may still ask whether they should be
considered relevant to assessments of criminal liability. Our re-
sults here do not settle this question. However, they are sug-
gestive. There could be no justice in punishing the knowing more
harshly than the reckless, if there is, in fact, no difference in the
minds of those whom we classify in one way and those we classify

in another. However, our results suggest that there is indeed such
a difference, and so it could be that we should work to help
jurors to see the distinction, and classify defendants accurately
under it, rather than abandoning it.
This work could also ultimately contribute to solving a more

practical, but just as daunting, problem: We know almost nothing
about the ways in which certain recognized mental disorders
might impact the processing of information and the occurrence
of the particular mental states that are inculpatory under the
MPC. Currently, the law in many jurisdictions handles this
problem by allowing defendants to introduce evidence of an al-
leged mental disorder (intoxication being the usual exception),
and then letting the judge or jury speculate about whether that
condition had any impact on the defendant’s mental functioning
at the time of the offense. So, for example, a defendant charged
with a knowing crime might introduce evidence that he has a
schizoaffective disorder and argue that that condition prevented
him from acting knowingly or recklessly, despite the fact that we
currently have little understanding about whether and under what
conditions people suffering from schizoaffective disorder are able
to process information about risks. Conversely, intoxication is
generally not a defense to “recklessness” crimes, but many states
allow evidence that a defendant was intoxicated at the time of an
offense to show that he or she did not have the “knowledge” re-
quired for a “knowing” crime. Understanding more about the way
our brains distinguish between legally relevant circumstances in the
world has the potential to improve what, up until now, has been the
law’s guesswork about the ways in which certain mental conditions
might impact criminal responsibility.

ACKNOWLEDGMENTS.We thank Frank Tong for useful discussions and all of
the members from the Human Neuroimaging Lab, especially Alec Solway,
Andreas Hula, and Sébastien Hétu, for helpful comments and discussion. We
are also thankful for the support of the Wellcome Trust, the Kane Founda-
tion, the Brown Foundation, and the National Institute on Drug Abuse. This
study was supported by a grant from the John D. and Catherine T. MacArthur
Foundation to Vanderbilt University, with a subcontract to Virginia Tech. Its
contents do not necessarily represent official views of either the John D. and
Catherine T. MacArthur Foundation or the MacArthur Foundation Research
Network on Law and Neuroscience (www.lawneuro.org).

1. Shen FX, Hoffman MB, Jones OD, Greene JD, Marois R (2011) Sorting guilty minds.
NYU Law Rev 86(5):1306–1360.

2. Severance LJ, Goodman J, Loftus EF (1992) Inferring the criminal mind: Toward a
bridge between legal doctrine and psychological understanding. J Crim Justice 20(2):
107–120.

3. Haynes JD, Rees G (2006) Decoding mental states from brain activity in humans. Nat
Rev Neurosci 7(7):523–534.

4. Hughes V (2010) Science in court: Head case. Nature 464(7287):340–342.
5. Treadway MT, et al. (2014) Corticolimbic gating of emotion-driven punishment. Nat

Neurosci 17(9):1270–1275.
6. Tobler PN, O’Doherty JP, Dolan RJ, Schultz W (2007) Reward value coding distinct

from risk attitude-related uncertainty coding in human reward systems. J Neurophysiol
97(2):1621–1632.

7. Huettel SA, Song AW,McCarthy G (2005) Decisions under uncertainty: Probabilistic context
influences activation of prefrontal and parietal cortices. J Neurosci 25(13):3304–3311.

8. Preuschoff K, Bossaerts P, Quartz SR (2006) Neural differentiation of expected reward
and risk in human subcortical structures. Neuron 51(3):381–390.

9. Preuschoff K, Quartz SR, Bossaerts P (2008) Human insula activation reflects risk
prediction errors as well as risk. J Neurosci 28(11):2745–2752.

10. Vilares I, Howard JD, Fernandes HL, Gottfried JA, Kording KP (2012) Differential
representations of prior and likelihood uncertainty in the human brain. Curr Biol
22(18):1641–1648.

11. Vilares I, Kording K (2011) Bayesian models: The structure of the world, uncertainty,
behavior, and the brain. Ann N Y Acad Sci 1224:22–39.

12. d’Acremont M, Schultz W, Bossaerts P (2013) The human brain encodes event fre-
quencies while forming subjective beliefs. J Neurosci 33(26):10887–10897.

13. McCoy AN, Platt ML (2005) Risk-sensitive neurons in macaque posterior cingulate
cortex. Nat Neurosci 8(9):1220–1227.

14. Ahn WY, et al. (2014) Nonpolitical images evoke neural predictors of political ideol-
ogy. Curr Biol 24(22):2693–2699.

15. Ryali S, Supekar K, Abrams DA, Menon V (2010) Sparse logistic regression for whole-
brain classification of fMRI data. Neuroimage 51(2):752–764.

16. Haxby JV, Connolly AC, Guntupalli JS (2014) Decoding neural representational spaces
using multivariate pattern analysis. Annu Rev Neurosci 37:435–456.

17. Gabrieli JD, Ghosh SS, Whitfield-Gabrieli S (2015) Prediction as a humanitarian and
pragmatic contribution from human cognitive neuroscience. Neuron 85(1):11–26.

18. Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human
brain. Nat Neurosci 8(5):679–685.

19. Norman KA, Polyn SM, Detre GJ, Haxby JV (2006) Beyond mind-reading: Multi-voxel
pattern analysis of fMRI data. Trends Cogn Sci 10(9):424–430.

20. Tong F, Pratte MS (2012) Decoding patterns of human brain activity. Annu Rev
Psychol 63:483–509.

21. Zou H, Hastie T (2005) Regularization and variable selection via the elastic net. J R Stat
Soc B 67:301–320.

22. Whelan R, Garavan H (2014) When optimism hurts: Inflated predictions in psychiatric
neuroimaging. Biol Psychiatry 75(9):746–748.

23. Combrisson E, Jerbi K (2015) Exceeding chance level by chance: The caveat of theo-
retical chance levels in brain signal classification and statistical assessment of de-
coding accuracy. J Neurosci Methods 250:126–136.

24. Singer T, Critchley HD, Preuschoff K (2009) A common role of insula in feelings,
empathy and uncertainty. Trends Cogn Sci 13(8):334–340.

25. Miller EK (2000) The prefrontal cortex and cognitive control. Nat Rev Neurosci 1(1):59–65.
26. Young L, Camprodon JA, Hauser M, Pascual-Leone A, Saxe R (2010) Disruption of the

right temporoparietal junction with transcranial magnetic stimulation reduces the
role of beliefs in moral judgments. Proc Natl Acad Sci USA 107(15):6753–6758.

27. Tversky A, Kahneman D (1981) The framing of decisions and the psychology of choice.
Science 211(4481):453–458.

28. De Martino B, Kumaran D, Seymour B, Dolan RJ (2006) Frames, biases, and rational
decision-making in the human brain. Science 313(5787):684–687.

29. Moll J, Zahn R, de Oliveira-Souza R, Krueger F, Grafman J (2005) Opinion: The neural
basis of human moral cognition. Nat Rev Neurosci 6(10):799–809.

30. Henrich J, Heine SJ, Norenzayan A (2010) The weirdest people in the world? Behav
Brain Sci 33(2-3):61–83, discussion 83–135.

31. Deichmann R, Gottfried JA, Hutton C, Turner R (2003) Optimized EPI for fMRI studies
of the orbitofrontal cortex. Neuroimage 19(2 Pt 1):430–441.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1619385114 Vilares et al.

http://www.lawneuro.org/
www.pnas.org/cgi/doi/10.1073/pnas.1619385114


Supporting Information
Vilares et al. 10.1073/pnas.1619385114
SI Materials and Methods
Experimental Details.
Experimental paradigm. Participants were told a cover story about
carrying “valuable content” (such as documents, microchip
processors, etc.), here referred to as “contraband,” through a
checkpoint (Fig. S1). Note that, although the instructions did not
use the term contraband so as not to discourage participants that
were averse to illegal behavior, we use the term here for con-
venience. In each trial, they were shown between one and five
suitcases, only one of which actually contained contraband, and
were asked whether they were willing to carry a suitcase randomly
chosen from the group (Fig. S1A, Left). Hence, the number of
suitcases shown represented the risk of carrying the target suitcase
with contraband (Contraband Risk): if only one suitcase was pre-
sented, then the participants knew with certainty that the suitcase
had contraband in it (knowing situation, Pcontr = 1), whereas if
more than one suitcase was presented they were not sure whether
the suitcase they were assigned contained contraband, but were
aware of the risk (reckless situation, with Pcontr = 0.5, 0.33, 0.25, or
0.2 of having contraband in the suitcase). Participants also had
different probabilities of being caught (Search Risk), with the
probability of being searched at the checkpoint ranging from
Psearch = 0 to 0.8 (symbolized by 10 tunnels, in which a proportion
of them could be occupied by a “guard”; Fig. S1A, Right). One-
half of the participants (n = 20) saw the probability of carrying a
suitcase with contraband after already being shown the search risk
(Search-First group), whereas the other half started by seeing the
suitcases before being shown the search risk (Contraband-First
group).
The motivation to have a Contraband-First condition and a

Search-First condition was to control for the order of presentation
of the information. The motivation to not only change the con-
traband risk but to change the search risk as well was twofold.
First, it enabled us to provide a more realistic setup—one that
involved (as in real life) differing potential search risks. Second,
it enabled us to vary search risks together with contraband risks,
in a way that allowed us to disambiguate the effects of Contraband
Risk, Expected Value, and Variance in Reward. Without variation
in search risk, these would be perfectly correlated, and therefore
indistinguishable.
Task payouts are shown in Fig. S1B. At the beginning of each

trial a participant was endowed with $6,000. After seeing the two
types of risk information (Contraband Risk and Search Risk),
participants decided whether or not to carry a suitcase. To carry
a suitcase, participants had to pay $500. If they decided not to
carry, they had to pay $1,500, leaving them with a trial total of
$4,500. If no decision was made (participants did not respond
during the allocated time), participants lost $2,500, leaving them
with a trial total of $3,500. These three costs associated with each
trial (the cost to carry, the cost to reject, and the cost of inaction)
were considered a “life tax” and were included (informed by
pilot studies) to simulate motivations to act expressed by indi-
viduals engaging in the real-world analog of our experiment. If
participants chose to carry a suitcase, if it contained contraband
(“target suitcase”) and if they were not searched, they received
$2,500 extra, getting a trial total of $8,000 (the maximum pos-
sible payoff). However, if participants were searched while car-
rying the target suitcase containing contraband, they lost $3,500,
leaving them with a trial total of $2,000 (the minimum possible
payoff). If they chose to carry a suitcase and it did not contain
contraband (“dummy suitcase”), they received no extra money,
leaving them with a trial total of $5,500, regardless of whether or

not they were searched. Participants were not shown the results
of individual trials. Hence, because no feedback was provided at
the end of each trial, all trials were independent from one an-
other. At the end of each trial, a computer simulated the out-
come for that trial. At the end of the experiment, the computer
randomly picked the payout of one trial and participants earned
1% of their trial total in US dollars. Hence, each participant
received $20 to $80 at the end of the experiment, the exact value
depending on the trial randomly chosen by the computer and the
choices and outcome of that trial.
Display/stimulus. The sequence of each trial was as follows (Fig.
S1C): First, the contraband risk (Contraband-First group) or the
search risk (Search-First group) was shown on the screen, for 2 s.
Afterward, there was a blank screen for about 3 s (duration jit-
tered between 2.5 and 3.5 s), and the search risk or contraband
risk (respectively) was displayed, also for 2 s. Then another blank
screen was shown (duration: average 3 s, jittered between 2.5 and
3.5 s), and a screen appeared indicating that the program was
selecting which suitcase would be carried (duration: 0.75 s), after
which another screen was shown asking the subject to choose to
carry that suitcase or not. Participants had free time to make their
decision, and they expressed their decision by pressing a button
(representing either “yes” or “no”). If no button was pressed in the
following 5 s, it was recorded as if no decision was made. After
the decision was inputed (or the 5 s passed), the choice made by the
participant was highlighted on the screen, and the computer cal-
culated the results of that trial/round (not shown to the participant).
Finally, about 0.75 s after the choice was submitted, participants
were shown a screen with a fixation cross, which lasted for about 3 s
(between 2.5 and 3.5 s, jittered), and then a new trial started.
Participants performed a total of 125 trials in the experiment

(5 types of Search Risk × 5 types of Contraband Risk × 5 repe-
titions of each trial type). The exact sequence of trials shown was
chosen randomly and differed among participants. The sequence
of each trial can be seen in Fig. S1C.

Behavioral Data Analyses.
Statistical tests. To determine whether there were significant dif-
ferences in the choice to carry contraband based on the risk of
having contraband, the risk of being searched, and the order of
risk information received, a 5 × 5 × 2 mixed-model ANOVA was
conducted with Contraband Risk and Search Risk serving as
within-group factors containing five levels each and the order of
information seen serving as the two-level between-group factor
(Contraband-First or Search-First). This analysis was done using
the statistical software SPSS.
Logistic regression. The participants’ behavior was analyzed using
logistic regression as implemented by the function glm in R
(Team 2014). The dependent variable was a participant’s response:
Accept or Reject carrying the suitcase. The dependent variables
were Contraband Risk, Search Risk, and the interaction Contra-
band Risk*Search Risk. The condition (Contraband-First or Search-
First) was also entered as a categorical variable, with Contraband-
First decisions coded as 0, and Search-First decisions as 1. The terms
in the model were thus as follows: a constant, a dummy variable for
Condition, Contraband Risk, Contraband Risk*Condition, Search
Risk, Search Risk*Condition, Contraband Risk*Search Risk, and
Contraband Risk*Search Risk*Condition.

fMRI Analysis.
Scans and preprocessing. Anatomical and functional images were
acquired on a Siemens 3-T Trio scanner at Virginia Tech Carilion
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Research Institute in Roanoke, Virginia. A high-resolution (1.0 ×
1.0 × 1.0-mm voxels) T1-weighted anatomical image was ac-
quired for each participant using a magnetization-prepared
rapid-acquisition gradient echo sequence. Functional images
were acquired using echo-planar imaging. Slices were acquired at
an angle 30° to the anterior–posterior commissure (31). The
repetition time was 2 s, the echo time was 25 ms, and the flip angle
was 90°. Thirty-four (interleaved) slices were acquired, resulting in
functional voxels of size 3.4 × 3.4 × 4.0 mm. Preprocessing was
done in SPM8. Briefly, the functional scans were slice-timing
corrected, aligned to a functional average scan for that section,
and unwarped. The anatomical scan was coregistered to the mean
of the functional images. The anatomical image was segmented
and normalized to the SPM templates, and the results used to
normalize the functional images, which were resliced to 4.0 × 4.0 ×
4.0-mm voxels. Finally, the functional images were smoothed
using an 8-mm full-width half-maximum Gaussian kernel.
General linear model. For every participant, a general linear model
(GLM) was fitted to the participant’s fMRI data (first-level
analysis), using SPM8. A standard rapid event-related fMRI
approach was used, in which the onset of each event type was
convolved with a canonical hemodynamic response function and
then regressed against the measured fMRI signal. The specific
events regressed depended on what was being studied:

i) Main model: Resulting betas used as input for the different
knowing vs. reckless comparisons (results from Figs. 2–4).
The events modeled were as follow: five event types repre-
sented the different contraband risks (when one suitcase,
two suitcases, three suitcases, four suitcases, or five suit-
cases were shown, corresponding to probabilities of 1, 0.5,
0.33, 0.25, and 0.2 of having the target suitcase with con-
traband), with the onset times modeled at the time in which
the suitcase(s) were first shown, including only the trials in
which the participant decided to carry the suitcase. The
times in which the participant decided to not carry the
suitcase were modeled as a different event, parametrically
modulated by contraband risk. Five event types represented
the different search risks (with 0, 2, 4, 6, or 8 of the 10
tunnels having a guard in it, corresponding to probabilities
of 0, 0.2, 0.4, 0.6, and 0.8 of being searched), with the onset
times corresponding to the moment in which the screen
with the tunnels appears. These were not separated by
carry/not carry responses because, for some conditions
(e.g., when search risk was very high), some participants
never decided to carry the suitcase. Finally, we modeled
the event “choice submitted,” with onset times modeled
at the time in which an answer was given by the participant
(shown by a button press).

ii) Model used to predict participant’s choice (shown below in
SI Results and Discussion): The events modeled were the
five different contraband risks described above, modeled at
the time contraband was shown; the five different search
risks, modeled at the time search risk was presented; and
two event types representing the two potential answers
given by the participant for that trial (“yes,” carry the suit-
case; or “no,” do not carry or did not decide), with onset
times modeled at the time in which an answer was given by
the participant (shown by a button press), for a total of 12
events.

iii) Model used to predict knowledge vs. recklessness when no
search risk was present (Fig. S3A): 25 events, correspond-
ing to all of the possible Contraband*Search Risk combi-
nations (5*5), were modeled at the time contraband risk
was presented. The Contraband*Search Risk events were
not further stripped away from negative responses, as not
all of the combinations had enough trials to be able to
make predictions. Hence, the two event types representing

the two potential answers given by the participant for that
trial were also modeled.

iv) Model used to predict knowledge vs. recklessness at the
time search risk was presented (shown below in SI Results
and Discussion): Similar to the main model but with the
different contraband risks modeled at the time search risk
was first presented (and not when contraband was pre-
sented). Because modeling search risk at the same time
would make for betas not uniquely defined, we did not
include search risk events in this particular model.

v) Model used to predict knowledge vs. recklessness at the
time choice was submitted (shown below in SI Results and
Discussion): Similar to the main model but with the different
contraband risks modeled at the time choice was submitted.

vi) Model used to predict knowledge vs. recklessness extract-
ing away the effects associated with Variance in Reward
(Fig. S3B): Similar to the main model but adding Variance
in Reward as a parametric modulator to the Contraband Risk
events. Then, for the ENmodel, only the main events (not the
effects associated with the parametric modulator) are used.

vii) Model used to predict knowledge vs. recklessness extract-
ing away the effects associated with Expected Value (Fig.
S3C): Similar to the main model but adding Expected
Value as a parametric modulator to the contraband risk
events. It was not possible to add Expected Value and
Variance in Reward at the same time to the model because,
for some subjects, this resulted in multicollinearity.

viii) Model to distinguish the specific effects of Contraband
Risk (probability of carrying the suitcase with contraband)
from those associated with Expected Value and Variance
in Reward (Figs. S4 and S5): one event was suitcases shown
(modeled at the time suitcases were first presented), with
three parametric modulators: Contraband Risk, Expected
Value, and Variance in Reward. Another event was search
risk shown (modeled at the time the screen with the tunnels
appears), parametrically modulated by Search Risk; and
two other events: when the participant responds yes and
when the participant responds no (modeled at the time the
motoric response is given). The individual contrasts at this
level are then taken to the second level to do simple pop-
ulation responses to these effects (analysis done in SPM).

ix) Model used to predict knowledge vs. recklessness extract-
ing away the effects associated with probability of being
caught, that is, of being searched while carrying the target
suitcase (the suitcase that has contraband on it): Similar to
the main model but adding probability of being searched
while carrying the target suitcase as a parametric modulator
to the contraband risk events (Fig. S6).

x) Model used to predict knowledge vs. recklessness extracting
away the effects associated with probability of obtaining the
highest reward, that is, of not being searched while carrying
the target suitcase (the suitcase that has contraband on it):
Similar to the main model but adding probability of not
being searched while carrying the target suitcase as a para-
metric modulator to the contraband risk events (Fig. S7).

xi) Model that compares knowing with a mixed of reckless states:
Similar to the main model, but in which the different types of
reckless trials are not modeled independently, that is, there is a
contrast for knowing (one suitcase shown), and then only one
contrast for reckless, which in this model is only classified as
“more than one suitcase shown” and includes both two, three,
four, and five suitcases shown. The contrast associated when
the participant decides to not carry the suitcase after is also not
parametrically modulated, so that there is no specific mention
to the degree of recklessness in this particular model.

Besides these regressors (one for each event type), in all models
there was a constant term (encoding the average blood oxygen
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level-dependent response for that experiment/participant) and
also six nuisance regressors, which corresponded to participant-
specific head-movement parameters. Contrast images, derived
from a pairwise contrast between each event type and an implicit
baseline (equivalent to the beta image produced for that event),
were then calculated for each event and used as baseline data for
the elastic-net (EN) regression.

EN Regression.
Data used to estimate the model. For each participant, we extracted
two contrast/beta images (obtained by the GLM procedure
outlined above): one belonging to the event type knowing (when
only one suitcase was shown, and so participants knew that they
had the target suitcase with contraband, i.e., P = 1 of having the
target), and one belonging to a reckless situation (e.g., when five
suitcases were presented, i.e., probability of having the target
suitcase with contraband is P = 0.2). The brain data corre-
sponding to each contrast condition are then reshaped into a
vector (1 × number of voxels) and entered as a row in the data
matrix. After doing this for each participant, the final data matrix
that will be used for EN regression has 2n rows, with n repre-
senting the number of participants and 2 representing the
number of different events we are trying to predict; and p voxels,
corresponding to the number of voxels in the participant’s con-
trast image. In our task, the matrices had 40 rows (20 partici-
pants in each group × 2 events) and 65,280 columns (each one
corresponding to one voxel in the brain). We then took out the
voxels that did not fall inside the brain, leading to a final number
of voxels/columns of ∼21,000. Thus, for the EN model, we had
40 observations (2 observations per participant) and 21,000
predicting variables (i.e., features). Each observation was asso-
ciated with one particular label (knowing or reckless), which we
then tried to predict.
We chose to model knowledge vs. recklessness at the time the

contraband risk is revealed to have a “cleaner” knowledge vs.
reckless brain state, and so maximize our chances of observing
these two brain states, should they exist.
The EN regression. The EN regression (21) is a form of regularized
linear regression that tries to minimize as follows:

min
β0, β
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where yi is the vector we are trying to predict (in our case,
composed by two labels, knowing and reckless), xi are the pre-
dictor variables (in our model, the voxels), N corresponds to the
number of observations, l(. . .) is the loss function associated with
the type of data we are using (e.g., Gaussian, binomial); β cor-
responds to the coefficients of the model that we are trying to
estimate (being β0 the intercept), λ (lambda) is a regularization
parameter that controls the strength of the regularization (for
high values of λ, all of the coefficients will tend to zero; for λ = 0,
the EN regression becomes an ordinary least-squares regres-
sion), and α (alpha) is the EN mixing parameter, which varies
from 0 to 1 and indicates the relative quantities of L2 norm
penalized regression (ridge regression, which corresponds to an
α = 0) and L1 norm penalized regression (lasso regularized re-
gression, which corresponds to an α = 1). Having some kind of
regularization of the β coefficients/predictors is very important to
minimize overfitting in the case in which the number of predic-
tors (p) is much greater than the number of participants (n) (i.e.,
p > > n) (14), as is the case with fMRI data (if we assume that
each voxel is a variable). Ridge regression (α = 0) does not make
variable selection, so although it shrinks the β coefficients, it
keeps all of them, hence it becomes harder to disentangle which
predictor variables are important. Lasso regression, on the other
hand, does make variable selection but it does not allow for

several correlated coefficients to remain in the final model, even
if these coefficients are also important for the model. Further-
more, it never retains more variables than the number of obser-
vations. The EN penalized regression, by mixing these two types
of penalization, is able to make variable selection while at the
same time allowing for clustering of potential relevant variables.
Parameter selection and model fitting.To fit the EN penalized logistic
regression, we used the glmnet package for Matlab (web.stanford.
edu/∼hastie/glmnet_matlab/), which also included a function to
do cross-validated model fitting (cvglmnet.m) and a function to
make predictions (glmnetPredict.m). To select the two tuning
parameters for the EN, the mixing parameter (α) and the overall
complexity parameter (λ), we first estimated α and, after α was
fixed, λ was selected (14) (Fig. S2). To estimate α, similar to the
procedure used by Ahn et al. (14), we conducted a grid search
over different values of α (from 0 to 1, in small increments).

i) For each potential α value, we did the following procedure:

a) Fivefold cross-validated EN fitting, using the cvglmnet.m
function. What this function does, step by step, is as
follows:

i) At the particular value of α chosen, it first fits the
EN model paths to get the λ sequence.

ii) It then divides the data randomly into five groups, or
folds.

iii) For each value of λ, it fits a model (in this case, a
logistic model) using penalized maximum likelihood,
that is, it fits an EN model, using only 80% of the
data (four of the five folds previously made).

iv) It then tests the model on the left-out fold, and
computes the corresponding minimum binomial de-
viance. It does that for each λ.

v) Steps i, ii, iii, and iv are then repeated five times
(one for each fold), and the average binomial
deviance over the five repetitions is computed for
each λ.

b) For each of these runs (performed by cvglmnet), we then
saved the minimum average binomial distance obtained
with the model.

c) For each α, we repeated 40 times steps a and b, and
calculated the mean of the minimum average binomial
deviance over the 40 repetitions.

ii) We then chose the α that minimized this value.
iii) After choosing α, we proceeded to estimate λ, and the β

coefficients of the model. We repeated the following pro-
cedure 40 times:

a) We ran a fivefold cross-validated EN regression (identi-
cal to step 1a), using the α obtained from steps i and ii.

b) From it, we obtained the λ value that minimizes the bi-
nomial deviance (λmin).

c) We also obtained the indices associated with the division
of the data in five folds.

d) Then, for λmin, we:

i) Refitted an EN regression using only four folds of
the data (using the division made by the cvglmnet
function) and extracted the corresponding β coeffi-
cients for all regressors (voxels);

ii) Recorded, for each regressor (voxel), if it “survived”
in the current run, that is, if its β value is not zero.

iii) We then used the resulting EN model and tested it
on the “left-out” fold, obtaining the “fitted proba-
bilities” associated with each observation in the left-
out fold, and also the corresponding most likely
classification (i.e., if the observation most likely
came from a knowing or reckless situation). From
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these, we computed both the correct classification
rate (CCR; how often did it accurately guess the
situation the observation belonged to) and the area
under the curve (AUC) of the receiver-operating
characteristic curve. Note that the CCR and the
AUC computed this way represent the out-of-sam-
ple, cross-validated performance of the model, as
the observations in the left-out fold were not used
to calculate the EN model, and are suggestive of
how well the model would generalize.

iv) Repeated steps i through iii five times, each time
leaving out a different fold.

iv) After doing steps a through d 40 times, we then calculated a
matrix with the “signed survival rate” for each voxel. For
that, we calculated the “survival rate” of each voxel, mean-
ing how many times that voxel “survived” on the total of the
200 runs done (40 iterations × 5 folds), and we multiplied
this survival rate with the sign of the mean β-coefficient
values obtained for that voxel.

v) We then projected the signed survival rate of each voxel
back into the brain. An average positive survival rate indi-
cates voxels more predictive of being in the reckless state
(i.e., the estimated coefficient values associated with those
voxels were on average positive), whereas a negative survival
rate indicates voxels more predictive of being in a knowing
situation (which, in our model, was the “baseline” label).
Higher survival rates indicate that the voxel was used fre-
quently to distinguish the knowing and reckless situations.

vi) To calculate the overall performance of the model, we made
the average of the 200 AUCs and CCRs obtained during
step 3 (40 iterations × 5 folds per iteration).

Leave-one-subject-out cross-validation. To obtain single-subject ac-
curacy, we performed the same general steps as outlined above
but using data from only n − 1 participants each time. Specifi-
cally, in each iteration, we leave the data of one participant out
and do a fivefold CV to obtain both α and λ (using the same
general steps as outlined above). We then fit an EN model using
the data of the n − 1 participants and the parameters (α and λ)
obtained through fivefold CV, extract the corresponding betas,
and test the data on the left-out participant. This procedure is
then repeated n times (equal to the number of participants).
Double–cross-validation procedure. To obtain a very stringent mea-
sure of out-of-sample performance, we did a “double–cross-
validated” procedure. Namely, we divided the participants in
half, randomly, and built an EN classifier using only one-half of
the data (doing fivefold cross-validation of the parameters within
that data, following the same general steps outlined above), and
then tested the resulting model on the untouched other half of
the data. This other half of the data then serves as a completely
independent dataset, as it was not used at all to train the EN
classifier. This process is then repeated for the other half and the
results averaged. For the outer fivefold inner-fivefold double
cross-validation, the procedure is exactly the same, just that the
participant’s data are divided in five (instead of two) groups, and
the EN classifier fitted on four-fifths of the data (using fivefold
CV within it to fit it) and tested on the remaining one.
Permutation test. If there is no real information present in the data,
a binary classifier (as in the example here, given that we are trying
to classify two different labels, knowing and reckless) should give,
on average, a correct classification rate of 50% and an AUC of
0.5. Hence, anything above that should indicate that the model is
performing better than chance. However, these values only hold
for infinite sample sizes, and for small sample sizes the values can
be higher (or lower) by chance (23). To assess the “significance”
of the results we obtained in the models, we ran a permutation
test, in which, for each permutation run, we followed the exact

same procedure as outlined above, but in which we shuffled the
labels corresponding to each observation (i.e., in our experiment,
the labels that said if the data belonged to a knowing or a
reckless situation). We iterated this procedure 200 times. Then,
to obtain the “P value” for a particular AUC/CCR value, we
calculated the proportion of iterations that had an AUC/CCR
that high or higher. The results obtained with the CCR were
identical to the ones presented in Combrisson and Jerbi (23) and
very close to the theoretical values (based on a binomial cumu-
lative distribution function, for number of observations = 40 and
2 different groups to be distinguished), with “statistical signifi-
cance” (i.e., a P value of 0.05) achieved on average around AUC =
0.70/CCR = 60%. Note: for the permutation test, we fixed α = 0.5
(due to time constrains). Redoing all of the analysis reported in
the text using α = 0.5 leads to the same basic results.

SI Results and Discussion
Behavioral Analysis—Logistic Regression. The logistic regression
over participants’ behavior revealed that, even when the mone-
tary gain/loss potential was equal, individuals who processed the
likelihood of being searched by guards first (Search-First condi-
tion), followed by the likelihood that a suitcase contained contra-
band, were less likely to carry a contraband suitcase compared with
those who processed the same information in the opposite order
(Contraband-First condition; Table S1).
More precisely, logit regression analysis showed (i) a signifi-

cant main effect of Search Risk; (ii) a significant Contraband
Risk by Search Risk interaction; and (iii) a significant Condition
by Contraband Risk by Search Risk interaction: The effect of
Contraband Risk became greater as Search Risk increased, and
this effect was bigger when the Search Risk was seen first. This
order-dependent behavioral effect can be seen as a temporally
extended framing effect. It is well known that human decision-
making can be influenced by the manner in which options are
presented (27, 28). Our results suggest that this is true not only for
decisions involving multiple options but also for differing pre-
sentations of information related to a single decision. In the
context of the current task, it is plausible that the likelihood of
being searched is a more aversive signal compared with the like-
lihood that a case being carried might contain contraband. Our
results indicate that this signal, when processed before further
information arrives, increases the impact of Contraband Risk,
making knowing (that is, Contraband Risk = 1) even more salient.

Control Analyses. To further confirm that the high performance of
the EN classifier in the Search-First condition is not just driven by
differences in visual information, we reran the obtained EN
classifier (distinguishing one vs. five suitcases) but taking away all
of the surviving voxels that were part of the occipital/visual cortex.
The resulting EN classifier maintained its high predicting ability,
having an out-of-sample average AUC value of 0.834 (Pperm =
0.005) and an average CCR of 70.6% (Pperm = 0.005), suggesting
once more that it is not the visual information driving this high
performance of the classifier.

Single-Subject Precision. To obtain a measure of single-subject
precision, we fitted an EN classifier using a leave-one-subject-out
procedure on top of the fivefold cross-validation (see SI Materials
and Methods, EN Regression, Leave-One-Subject-Out Cross-Validation
for details). We found that, for the Search-First condition, the
EN classifier was able to predict with high accuracy whether the
brain data corresponded to a knowing (Contraband Risk: Pcontr =
1) or a reckless (Pcontr = 0.2) situation. The EN classifier had an
out-of-sample mean AUC of 0.944 (Pperm = 0) and a mean correct
classification rate of 81.8% (Pperm = 0). For the Contraband-First
condition, the EN classifier had an out-of-sample mean AUC of
0.499 (Pperm = 0.33) and a mean correct classification rate of 50%
(Pperm = 0.1). Thus, in our Search-First condition, we were able
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to obtain a high single-subject precision in distinguishing a
knowing from a reckless scenario.

Half-Split/Double–Cross-validation.Within each group, we also split
the participants in half, randomly, and built an EN classifier using
only one-half of the data (and doing fivefold cross-validation of
the parameters within that data). We then tested the resulting
model on the untouched other half of the data. Using this extra,
more stringent, analysis, we still observe a higher-than-chance
prediction accuracy in the Search-First condition. Specifically, the
EN classifier achieved an out-of-sample mean AUC of 0.765
(Pperm = 0) and a mean correct classification rate of 73.9%
(Pperm = 0). For the Contraband-First condition, the EN classi-
fier had an out-of-sample mean AUC of 0.503 (Pperm = 0.46) and
a mean correct classification rate of 50.5% (Pperm = 0.15).
Similarly, when we split the data into five groups, train the
classifier on four-fifths of the data (using fivefold CV within this
group), and then test on the left-out data, we also obtain good
prediction accuracies. This approach yielded a mean AUC of
0.803 (Pperm = 0) and a mean CCR = 73.3% (Pperm = 0). Hence,
the higher-than-chance prediction accuracies observed in the
Search-First condition when classifying knowing vs. reckless are
maintained even when using very stringent analyses.

Additional Analyses.The lack of predictive power for the EN in the
Contraband-First condition is somewhat surprising, given that the
only thing that changed between conditions was the order of
presentation of information. A trivial explanation could be that
the functional imaging data of one or more participants’ in the
Contraband-First condition is corrupted. If that were the case,
then it would not be possible to obtain any good predictive
models with this dataset. However, when predicting participants’
decision to carry the suitcase (see below), the EN model per-
formed with very high accuracies (AUC > 0.9) both in the
Search-First group but also in the Contraband-First group. This
indicates that there is some other reason for the low perfor-
mance in the Contraband-First condition. Our behavioral anal-
ysis revealed that, although the content and the level of risk
associated with a single decision were identical, the order in
which the information was received significantly altered choice
behavior (see Results, Behavioral Results, and also below). Thus,
in our task, the order in which participants received information
about contraband and search risk affected both their behavior
and the corresponding imaging data.

Knowing vs. Recklessness (Degree of Recklessness Not Specified).We
were also interested in understanding whether knowing could be
broadly distinguished from reckless, even if no additional in-
formation about the degree of recklessness were given. For that,
we built an EN classifier in which we contrasted knowing states
with a general reckless state (which included all reckless states),
not specifying the degree of recklessness (see SI Materials and
Methods for details). We found that, for the Search-First con-
dition, we were still able to predict with high accuracy whether
the brain data corresponded to a knowing or reckless scenario,
obtaining an average AUC value of 0.872 and a CCR of 75.9%
(Pperm = 0.005 and Pperm = 0, respectively). Thus, knowing
seemed to be broadly distinguishable from reckless, even in the
absence of information about the degree of recklessness.

Knowing vs. Recklessness (No Search Risk). To understand better
whether the identified brain pattern was specifically associated
with the extent of knowledge the participant had about the ex-
istence of contraband in the suitcase or whether the brain state
only exists when the participant knows that there is a risk of
getting searched, we reran the analysis but using only the
knowledge and recklessness trials in which search risk was 0 (no
guards on the tunnels). Hence there was no probability of getting

caught while carrying the contraband. Behaviorally, we can also
see that they were aware the search risk was 0, as participants
almost always decided to carry the suitcase when there was no risk
of being searched (Fig. 1). We find that, for the Search-First
condition, the EN model using only the no-search-risk trials did a
good job in classifying a knowledge vs. recklessness scenario,
giving a mean AUC = 0.832 and a mean CCR = 70.9% (Pperm =
0 for both). Moreover, the brain areas obtained related to a
knowing scenario were identical to the ones obtained in the full
model [mPFC, cingulate cortex, insula, temporoparietal junction
(TPJ); Fig. S3A]. Hence, the brain pattern we identified associated
with the state of knowledge appears even if there is no threat.

Knowing vs. Recklessness or Just Difference in Number of Suitcases?
Finally, we wanted to know if the high accuracy results obtained
with the classifier on the Search-First condition were mainly due
to it being able to distinguish any linear increase in the number of
suitcases being presented, and not to anything specific about the
knowing/reckless distinction. If that is the case, then the classifier
should perform similarly in distinguishing, say, two vs. five suit-
cases or distinguishing one vs. four suitcases. However, the EN
classifier built to disentangle between two suitcases vs. five
suitcases being presented (using the same procedure as before)
did not perform better than chance, having an out-of-sample
average AUC value of 0.243 and an average CCR of 30.6% (Pperm=
1 for both). Contrast these values with the average values obtained
at distinguishing between one vs. four suitcases (AUC = 0.82 and
CCR = 75.7%, Pperm = 0 for both). This once more indicates that
the obtained high accuracy results (in the Search-First condition)
are not simply due to a visual increase in the number of suitcases
being presented, and suggests that there may be something
special about the knowing/reckless distinction.

Brain Areas Specifically Associated with Contraband Risk, Expected
Value, and Variance in Reward. To try to understand whether the
brain differential activations we observed between knowing and
reckless were related to differences in Contraband Risk (knowing,
P = 1 of existence of contraband in the suitcase vs. reckless, 0 < P < 1,
aware of a possibility but not certainty of the existence of con-
traband) or whether they were just related to differences in
Expected Value or Variance in Reward [“risk” as defined by the
neuroeconomics literature (7–9)], we reran the same analyses
but extracting out the effects associated with either of these
factors (by modeling them separately at the first-level GLM
model and not including them in the input data for the EN
regression). We find that we still have a higher-than-chance
accuracy in predicting a knowing vs. reckless scenario, with the
EN regression having an out-of-sample CCR = 71.4% and an
AUC = 0.791 (Pperm = 0.005; Fig. S3B) when extracting out the
potential effects associated with Variance in Reward, and an out-
of-sample CCR = 71.7% and an AUC = 0.792 (Pperm = 0.005; Fig.
S3C) when excluding the effects associated with expected reward.
Furthermore, if we do a simple GLM modeling independently
Contraband Risk, Variance in Reward, and Expected Value, we
see that the brain pattern we observed to be related to the
knowing/reckless distinction continues to be specifically associated
with Contraband Risk (probability of carrying the suitcase with
contraband; see also Figs. S4 and S5). The EN model also per-
forms well after taking out potential effects associated with the
probability of being “caught,” that is, of being searched while
carrying the suitcase with contraband (CCR = 71.8%, AUC =
0.792, Pperm = 0.005; Fig. S6), or the probability of getting the
highest reward, that is, carrying the target suitcase and not being
searched (CCR = 71.7%, AUC = 0.792, Pperm = 0.005; Fig. S7).
Together, this indicates that the general brain pattern we see as-
sociated with the knowledge/recklessness distinction seem to be
specifically related to the probability of carrying the suitcase that
has contraband (Contraband Risk) and cannot be explained only
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by differences in expected value, variance in reward, fear of being
searched, or expectation of highest reward.

Simple GLM Results—Search Risk and Contraband Risk. To under-
stand which brain areas are specifically involved in signaling search
risk and contraband risk, we added separate regressors for Con-
traband Risk and Search Risk in a traditional GLM model and
analyzed the areas that were parametrically correlated with them.
The areas we found positively correlated with Search Risk were

mainly in the visual cortex, namely the calcarine sulcus [P < 0.05,
family-wise error (FWE) corrected]. Areas more active with
decreasing Search Risk include the bilateral TPJ, dorsolateral
prefrontal cortex (DLPFC), and middle temporal gyrus (P <
0.05, cluster size FWE corrected). Interestingly, the bilateral TPJ
and middle temporal gyrus were more active with decreasing
Search Risk both in the Search-First condition but also in the
Contraband-First condition, although somewhat less significant.
In comparison, for the Contraband Risk (associated with the
knowledge/recklessness distinction), whereas in the Search-First
condition Contraband Risk was robustly positively correlated
with a whole range of areas, namely dorsomedial prefrontal
cortex (dmPFC), bilateral insula, bilateral TPJ, middle temporal
gyrus, DLPFC, and cingulate cortex (P < 0.05, FWE corrected),
for the Contraband-First condition no areas appear, even at a
very lenient threshold (P < 0.01, uncorrected). Thus, the order in
which information was presented also had a strong effect on the
brain activations associated with Contraband Risk.
Note that, although not identical, there was some overlap

between the areas negatively correlated with Search Risk and the
areas involved in distinguishing knowing vs. reckless (e.g., bilateral
TPJ, DLPFC). These areas appear even though Contraband Risk
and Search Risk were modeled as independent events within the
sameGLM, indicating that they are independently activated by both
Contraband Risk and Search Risk. These areas could be generally
involved in signaling risk. However, if this were the case, then they
should be positively (and not negatively) correlated with Search
Risk. Both the TPJ and theDLPFChave been associated withmoral
decision-making (26, 29). It may be that, as the Search Risk de-
creases and it becomes more easy to carry contraband across bor-
ders, the choice is less of a risky one (how likely am I to get caught?)
and more a moral one (should I do it?). Alternatively, it may also
well be that these areas are specifically involved in signaling cer-
tainty, be it knowing that there was contraband in the suitcase or that
they would not be searched. An interesting future study to tackle this
issue would be to have participants do a task in which both the risks
and potential rewards are similar to the ones adopted in this ex-
periment, but in which there was no legal/contraband-carrying cover
story; hence there would be no potential moral dilemma.

Prediction Using Different Points in Time Within a Trial. We chose to
model knowledge vs. recklessness at the time the contraband risk
is revealed to have a “cleaner” knowledge vs. reckless brain state,
and so maximize our chances of observing these two brain states
should they exist. To analyze whether the prediction capability of
the EN would hold when other times are used, we fitted new
models in which knowledge (Pcontr = 1) and recklessness (0 <
Pcontr < 1) were modeled either at the time Search Risk was
being presented or at the time choice was being submitted. For
the model comparing knowledge (Pcontr = 1) vs. recklessness
(Pcontr = 0.33) using the time in which Search Risk was pre-
sented, the EN model did not perform better than chance: for
the Contraband-First condition, we obtained a mean AUC =
0.475 (Pperm = 0.54) and CCR = 37.2% (Pperm = 0.67); and the

Search-First condition had a mean AUC = 0.384 (Pperm = 0.99)
and a CCR = 35.7% (Pperm = 0.85). If we use the times in which
choice was submitted, the model also does not perform better than
chance: for the Contraband-First condition, there was a mean
AUC = 0.448 (Pperm = 0.62) and CCR = 38.3% (Pperm = 0.51); and
for the Search-First condition, mean AUC = 0.5 (Pperm = 0.42) and
CCR = 42.8% (Pperm = 0.34). During those times, the brain may
be more engaged in processing the current information (search risk
or making a decision), and the information about knowledge and
recklessness may not be as salient. Thus, the maximum pre-
dictability of the model was achieved when modeling the results at
the time the contraband risk is presented.

Predicting Choice. We can use the EN model approach to try to
predict participant’s choice (decision to carry or not carry the
suitcase) based on their brain data at the time the decision is
submitted. We found that, for both conditions, the EN model
was able to predict, with high accuracy, the decision of the
participant. For the Search-First condition, the EN model had a
mean AUC = 1 and a correct classification rate of 99.8% (Pperm =
0); and for the Contraband-First condition, the EN classifier had a
mean AUC = 0.968 and a mean CCR = 90.9% (Pperm = 0). Doing
a similar model but in which we try to predict the participant’s
choice based on brain data at the time the choice screen is first
shown (i.e., before they press a button signaling their choice) also
yields high performance results: the Search-First condition had a
mean AUC = 1 and CCR = 100% (Pperm = 0), and the Contra-
band-First condition had a mean AUC = 1 and CCR = 99.4%.
Although these very high performance accuracies are, at least in
part, likely due to differential motoric activations (as participants
had to press a button in the right hand to say yes and in the left
hand to say no), these results serve as a good EN tool validation,
showing that it is possible to use the EN regression in both
conditions (Search-First and Contraband-First) to distinguish,
with very high accuracy, brain states belonging to two different
scenarios.

Brain Areas Specifically Associated with Contraband Risk, Expected
Value, and Variance in Reward. To understand whether the brain
pattern we observed used in distinguishing knowing vs. reckless
was specifically associated with awareness of Contraband Risk
(probability of carrying contraband), or whether it was just related
to Expected Value or Variance in Reward, we performed a GLM
modeling independently Contraband Risk, Expected Value, and
Search Risk. We found that higher Contraband Risk (higher
probability) remained positively associated with increased acti-
vations in the dmPFC, middle and anterior cingulate cortex,
bilateral middle temporal gyrus, bilateral TPJ, and bilateral an-
terior insula; and negatively associated with bilateral activations
in the occipital cortex (P < 0.05, FWE corrected; Fig. S4A).
There were no areas surviving correction for multiple compari-
sons for higher Variance in Reward, and just the right TPJ was
significantly correlated with lower Variance in Reward (P < 0.05,
FWE corrected; Fig. S4B). For Expected Value, the “traditional”
areas appeared, namely ventromedial prefrontal cortex (vmPFC)
and ventral striatum (P < 0.05, FWE corrected; Fig. S4C). Both
Contraband Risk and Expected Value seem to, independently,
activate the superior temporal gyrus, TPJ, and part of the medial
PFC (although mainly nonoverlapping areas; Fig. S5). Thus, al-
though some brain areas were activated by several factors, the
brain pattern chosen by the EN regression to distinguish knowing
vs. reckless seems to be more specifically associated with Con-
traband Risk.
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Fig. S1. Experimental design. (A) A display of the different scenarios participants were exposed to. (Left) Probability of carrying contraband: Participants were
presented with one to five suitcases and asked whether they wanted to carry the suitcase. Only one of the suitcases was the “target” suitcase, supposedly
containing contraband, and the other ones were dummies. Hence, when only one suitcase was shown, there was certainty that it was the target suitcase
containing contraband (i.e., Pcontr = 1). This corresponds to the knowing situation. As the number of suitcases shown increases, there is a lower probability that
the person will carry the target suitcase (Pcontr = 0.5, 0.33, 0.25, or 0.2 of having contraband in the suitcase). All of these other situations (with probability of
carrying the target suitcase lower than 1) correspond to a reckless situation. (Right) Different potential search risk levels. This risk represents the probability of
being searched by a “guard.” If the participant is searched and has the target suitcase, he or she incurs a big penalty. The proportion of tunnels with guards
indicates the search risk level. (B) Schematic display of the potential decisions and corresponding outcomes that can occur in a given trial. (C) Sequence of
events shown to the participants in a typical trial. One-half of the participants (n = 20) were shown the contraband risk first, and then the search risk
(Contraband-First group), and the other half of the participants were shown the search risk first (Search-First group).
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Fig. S2. Schematic representation of how the elastic-net (EN) model is implemented. Step 1: Preparing the matrix of data that is going to be used for the EN.
For each participant, a simple general linear model (GLM) is first run, which includes as events the occasions in which they see “one suitcase” and also when
they see “five suitcases.” The corresponding beta maps are extracted and converted in rows, so that each participant is represented in two rows, one for “one
suitcase” (knowing) and one for “five suitcases” (reckless). The length of each row corresponds to the total number of voxels present (e.g., ∼65,000), minus the
columns associated with NaN values (corresponding to nonbrain data). Step 2: Using the matrix obtained in 1, a grid search over α is performed, and the α that
minimizes the average minimum binomial distance is chosen. Step 3: The EN is fitted over a range of λ values, and for each λ a series of coefficients is obtained
(one coefficient per voxel). Then, the λ that minimizes the binomial deviance is chosen (minimum λ). For this λ (λmin), we extract the corresponding coefficients
and register which voxels “survived” (i.e., had coefficients different from zero), using fivefold cross-validation. This procedure is then repeated 40 times, for a
total of 200 runs (fivefold cross-validation × 40 repetitions). Step 4: After all of the iterations are done, the survival rate is calculated for each voxel, multiplied
by the sign of the average coefficient value over 200 CV runs, leading to a “signed survival rate” value per voxel. See SI Materials and Methods for details.
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Fig. S3. Control figures. EN results obtained and displayed in a similar way to what was presented in Fig. 2, but using different baseline models. (A) Results
obtained with the EN when only using the trials that have no search risk (no guards present in the tunnels). The model led to good prediction accuracies, with a
CCR = 70.9% and an AUC = 0.832 (Pperm = 0). (B) EN results when using as a baseline the betas from a GLM in which the effects of Variance in Reward were
modeled separately and not included in the EN model. The model still retained its high prediction ability (CCR = 71.4% and AUC = 0.791, Pperm = 0.005). (C) EN
results when using as a baseline the betas from a GLM in which the effects of Expected Reward were modeled separately and not included in the EN model.
The model revealed similar prediction accuracies (CCR = 71.7% and AUC = 0.792, Pperm = 0.005). In all figures: (Top Left) Distribution of cross-validated areas
under the curve (AUCs) averaged over 200 values. (Bottom Left) Example of one ROC curve. (Middle) Voxels more associated with a knowing situation are
shown (negative surviving rate voxels; x = 2, y = 20, z = −2 and z = 26). (Right) Voxels more associated with a reckless situation are presented (positive surviving-
rate voxels, x = 14; z = 6). Each voxel’s (signed) survival rate is overlaid on an axial section of a 152-participant average T1 SPM brain template higher (n = 20;
with a minimum survival rate for the cluster’s peak voxel of 0.5; for B and C, only the voxels with a minimum survival rate of 0.5 are shown).
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Fig. S4. Effects of Contraband Risk, Variance in Reward, and Expected Value (GLM results), for the Search-First condition (n = 20). (A) Represented are the
areas positively (Left; x = 2, y = 20, z = −2 and z = 26) and negatively (Right; x = 14, z = 6) associated with the probability of carrying the suitcase that has
contraband in it (Contraband Risk). (B) Represented are the areas negatively associated with Variance in Reward (x = 50, z = 26). No areas positively associated
with Variance in Reward survived correction for multiple comparisons. (C) Represented are the areas positively parametrically associated with Expected Value
(Left, x = 2 and z = −2; Middle, y = 20 and z = 26; Right, y = 12 and z = −10). No areas negatively associated with Expected Value survived correction for
multiple comparisons. All areas represented survive correction for multiple comparisons (P < 0.05, FWE corrected either at the peak and/or cluster level, but
areas displayed at P < 0.001, uncorrected; minimum cluster size, five voxels). Activations overlaid on a 152-participant average T1 SPM brain template.
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Fig. S5. Effects of Contraband Risk, Variance in Reward, and Expected Value (common regions), for the Search-First condition (n = 20). (A) The brain regions
positively associated with Contraband Risk (in yellow) and with Expected Value (in red) are overlaid together. Common regions are shown in orange (original
threshold for GLM maps of P = 0.001, uncorrected, x = 2, y = 20, z = −2 and z = 26, shown in Fig. S4). (B) Both the regions positively associated with Contraband
Risk (in yellow) and negatively associated with Variance in Reward (in red) are overlaid. Common regions are shown in orange (x = 2 and z = −2, original
threshold for GLM maps of P = 0.001, uncorrected). Activations overlaid on a152-participant average T1 SPM brain template.
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Fig. S6. The knowing/reckless distinction, extracting out parametric effects associated with the probability of being caught. EN results when using as a
baseline the betas from a GLM in which the effects of probability of being caught (searched and with target suitcase) were modeled separately and not
included in the EN model (Search-First condition, n = 20). The model led to higher-than-chance prediction accuracies, with a CCR = 71.8% and an AUC = 0.792
(Pperm = 0.005). (A, Top) Distribution of cross-validated areas under the curve (AUCs) averaged over 200 values. (Bottom) Example of one ROC curve. (B) Voxels
more associated with a knowing situation are shown (negative surviving-rate voxels; x = 2, y = 20, z = −2 and z = 26). (C) Voxels more associated with a reckless
situation are presented (positive surviving-rate voxels, x = 14; z = 6). Each voxel’s (signed) survival rate is overlaid on an axial section of a 152-participant
average T1 SPM brain template higher (with a minimum survival rate for the cluster’s peak voxel of 0.5).
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Fig. S7. The knowing/reckless distinction, extracting out parametric effects associated with the probability of obtaining the highest reward. EN results when
using as a baseline the betas from a GLM in which the effects of probability of obtaining the highest reward (not searched and with target suitcase) were
modeled separately and not included in the EN model (Search-First condition, n = 20). The model still retained its high prediction ability (CCR = 71.7% and AUC =
0.792, Pperm = 0.005). (A, Top) Distribution of cross-validated areas under the curve (AUCs) averaged over 200 values. (Bottom) Example of one ROC curve. (B) Voxels
more associated with a knowing situation are shown (negative surviving-rate voxels; x = 2, y = 20, z = −2 and z = 26). (C) Voxels more associated with a reckless
situation are presented (positive surviving-rate voxels, x = 14; z = 6). Each voxel’s (signed) survival rate is overlaid on an axial section of a 152-participant average T1
SPM brain template higher (with a minimum survival rate for the cluster’s peak voxel of 0.5).
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Table S1. Behavioral regression

Coefficient Estimate SE z score Pr(>jzj)
Intercept −4.1977 0.2333 −17.992 <2e-16
Search Risk 5.3727 0.3985 13.482 <2e-16
Contraband Risk −0.4321 0.4967 −0.870 0.38436
Search*Contraband 2.8369 0.8799 3.224 0.00126
Search*Condition −0.1337 0.2640 −0.507 0.61238
Contraband*Condition −0.1235 0.4776 −0.258 0.79603
Search*Contraband*Condition 2.5885 1.0680 2.424 0.01536

Logistic regression of response (positive coefficient means for increased
probability of rejecting carrying the suitcase) on Search Risk (0, 0.2, 0.4, 0.6,
0.8), Contraband Risk (0, 0.2, 0.25, 0.33, 0.5, 1), the interaction of Search and
Contraband Risk (Search*Contraband), interaction of Search Risk and Con-
dition (Condition 1 is contraband risk seen first, and Condition 2 is search risk
seen first), interaction of Contraband Risk and Condition, and the three-way
interaction of Contraband Risk, Search Risk, and Condition.

Table S2. Surviving voxels

Conditions H Area

Coordinates

Survival ratex y z

Search-First
knowing

L/R Dorsomedial prefrontal cortex 2 40 46 1
L/R Anterior cingulate cortex 6 36 26 1
R Insula 42 24 2 1
R Temporoparietal junction 58 −48 30 1
L Temporoparietal junction −58 −48 30 1
R Middle temporal gyrus 58 −40 2 1
L/R Middle cingulate cortex 6 −36 38 1
R Dorsolateral prefrontal cortex 46 16 26 0.95
L/R Medial orbitofrontal cortex 2 28 −14 0.85
L Middle temporal gyrus −54 −32 −2 0.81
L Insula −30 20 10 0.67

reckless
R Visual cortex 26 −88 6 1
L Visual cortex −18 −96 2 0.99
R Supplementary motor area 14 −12 70 0.73

Contraband-First
knowing

R Temporoparietal junction 50 −60 46 0.26
reckless

L Visual cortex −30 −88 2 0.46
R Orbitofrontal cortex 38 32 −14 0.30
R Visual cortex 34 −84 14 0.28

Represented are the x, y, z coordinates for (one of the) peak voxels within each brain
area used by the EN regression to predict knowing vs. reckless. H, Hemisphere. Coordi-
nates are listed in standard Montreal Neurological Institute space.
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