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Abstract 

Revolutionary advances in neuroscience and genetics over the past two decades have provided unprece-
dented opportunities for increasing our understanding of the etiology and pathogenesis of psychiatric 
disorders. Despite these advances, the translation of this knowledge into clinical practice has been hindered 
by the significant heterogeneity within disorders and the neurobiologically imprecise categorization of 
patients. Traditional diagnostic categories do not capture the underlying neurobiological processes and 
etiological mechanisms of psychiatric disorders and cannot adequately inform prognosis and treatment. To 
address this gap, the National Institute on Mental Health (NIMH) has proposed an alternative research 
framework based on Research Domain Criteria (RDoC), which yields psychiatric classification grounded on 
discoveries from neuroscience and genomics. Recently, the RDoC approach has been adapted for the study 
of addictions with the Addictions Neuroclinical Assessment (ANA) framework (Kwako et al., Biol Psychia-
try 80:179–189, 2016), which proposes that the assessment of addictions should cover multiple systems 
and focus on three key neurofunctional domains: Executive Function, Incentive Salience, and Negative 
Emotionality. Building upon the aims of the RDoC framework, a new field of “precision psychiatry” has 
emerged, considered to be a paradigm shift in psychiatry. Both the RDoC framework and precision 
psychiatry are predicated on precise measurement, which has necessitated the development of novel analytic 
approaches for classification and novel dimensional tools for phenotyping that can identify the unique 
mechanisms of psychiatric disorders at an individual level. 
In this chapter, we make the case that theory-driven and data-driven computational approaches have 

enormous potential for increasing the precision and reliability of measurement, and the accuracy of 
diagnosis and prognosis in psychiatry. We review three types of computational approaches and their utility 
for precision psychiatry: (1) Theory-driven approaches, such as computational modeling; (2) Data-driven 
approaches, using various machine learning methods; and (3) Hybrid approaches, such as joint modeling and 
adaptive design optimization. We focus more narrowly on the application of these approaches to substance 
use disorders (SUD), where we attempt to map them on the current RDoC framework for addictions. 
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1 Introduction 

Revolutionary advances in neuroscience and genetics over the past 
two decades have provided unprecedented opportunities for 
increasing our understanding of the etiology and pathogenesis of 
psychiatric disorders. Despite these advances, the translation of this 
knowledge into clinical practice has been hindered by the signifi-
cant heterogeneity within disorders and the neurobiologically 
imprecise categorization of patients. It is now well known that 
just as multiple etiological pathways may lead to the same clinical 
presentation, clinically distinct diagnostic categories may also be 
related to the same underlying transdiagnostic mechanisms. It has 
become increasingly apparent that traditional diagnostic categories 
do not capture the underlying neurobiological processes and etio-
logical mechanisms of psychiatric disorders and cannot adequately 
inform prognosis and treatment. To address the gap between etiol-
ogy and nosology and to improve treatment outcomes, the 
National Institute on Mental Health (NIMH) has proposed an 
alternative research framework based on Research Domain Criteria 
(RDoC), which yields psychiatric classification grounded on dis-
coveries from neuroscience and genomics as a complement to the 
existing classification system [2]. According to the RDoC frame-
work, psychiatric disorders should be investigated at several inter-
acting levels of analysis, from genes, to molecules, cells, brain 
circuits, cognition, behavior, and environment, which has led to a 
progressive transition from categorical to dimensional approaches 
to measurement and classification. 

More recently, the RDoC approach has been adapted for the 
study of addictions with the Addictions Neuroclinical Assessment 
framework (ANA; [1]) which maps on three recurrent stages of 
addiction: binge/intoxication, withdrawal/negative affect, and 
preoccupation/anticipation, each associated with different neuro-
circuitry and functional domains [3, 4]. The ANA proposes that the 
assessment of addictions should cover multiple systems and 
focus on three key neurofunctional domains: (1) executive function 
(EF), associated with reduced prefrontal cortex (PFC)-mediated 
top-down impulse control characterizing the preoccupation/antici-
pation stage of the addiction cycle, commonly associated with 
craving and relapse; (2) incentive salience (IS), associated with 
phasic reward-based dopaminergic activation in the basal ganglia 
and the binge/intoxication stage of addiction; and (3) negative 
emotionality (NE), associated with engagement of brain stress 
systems and the withdrawal/negative affect stage of addiction, 
characterizing periods of abstinence. Though this framework has 
been applied primarily to alcohol use disorder [5], more recently it 
has been extended to other types of substance use disorders (SUD), 
including opioid use disorder, cocaine use disorder, and cannabis



use disorder [6, 7]. It has been employed predominantly in the 
context of assessment and treatment of SUD [8], but has recently 
been proposed for SUD prevention [9]. A nontrivial practical 
limitation of the RDoC approach is that the multi-dimensional 
assessment that it requires entails administering lengthy assessment 
batteries, which may take up to 10 h of testing [1]. This is a 
significant rate- and cost-limiting factor, which prevents the wider 
implementation of the RDoC approach in clinical research and 
practice. Another practical limitation is that current methods for 
biomarker discovery such as neuroimaging and various-omics 
approaches are costly, invasive, and not suitable for clinical practice. 
Neurobehavioral assessments can overcome some of these limita-
tions as they are noninvasive and relatively inexpensive; however, 
they seem to have stagnated, with many clinical neuropsychological 
tests developed decades ago still in use [10]. They also rely on crude 
summary statistics that are not particularly informative about the 
underlying neurocognitive processes and are minimally sensitive to 
individual differences, a prerequisite if a test is to have good 
diagnostic and predictive utility. The behavioral metrics of these 
tasks are most often atheoretical with respect to the underlying 
mechanisms and their neurocircuit signatures are poorly under-
stood because the tasks are designed to measure broad cognitive 
functions (e.g., “executive functions”) rather than specific neuro-
cognitive processes. Of particular concern is the low replicability of 
neuropsychological and neuroimaging findings [11–13] and the 
surprisingly low test-retest reliability of even the most well-
established neurocognitive tasks [14], where effects are reliable 
when measuring the behavior of groups of individuals but not 
when examining how an individual performs across repeated assess-
ments [15]. This has led to a “crisis of confidence” in psychological 
science [13], which has made some question the existence of key 
psychological constructs central to addiction, such as impulsivity 
[16]. Critically, the “reliability paradox” [14] suggests that many 
fMRI-based biomarkers that use such neurocognitive tasks may also 
be unreliable [17–19] and that well-established approaches in cog-
nitive psychology and neuropsychology may not directly translate 
to the study of individual differences in brain structure and function 
(but see [20, 21]). The lack of reliable, precise, and efficient 
neurobehavioral measures is therefore one of the most formidable 
challenges in measuring RDoC constructs. Clearly, novel alternate 
metrics are needed to measure complex behavior and neurofunc-
tional domains. 
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Building upon the aims of the RDoC framework to map 
clinical observations on neurobiological mechanisms, a new field 
of “precision psychiatry” has emerged over the past few years, 
considered to be a paradigm shift in the field of psychiatry 
[22, 23]. It integrates advances in neuroscience and technology 
into a computational framework, with the goal to develop



personalized therapeutic approaches tailored to the specific charac-
teristics of each individual [23]. The RDoC framework and preci-
sion psychiatry are both predicated on precise measurement, which 
has necessitated the development of new analytic approaches for 
classification and novel dimensional tools for phenotyping that can 
identify the unique mechanisms of psychiatric disease at an 
individual level. Dimensional approaches have helped identify key 
trans-disease processes such as delay discounting, considered key 
diagnostic and prognostic biomarkers of addiction [24, 25], and 
other types of reinforcement pathology [26]. Such approaches have 
helped address a critical challenge in the treatment of addiction: the 
significant heterogeneity within addiction to a specific drug, and 
the similarity of underlying processes across addictions to different 
drugs. 
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In this chapter, we make the case that theory-driven and data-
driven computational approaches have enormous potential for 
increasing the precision and reliability of measurement, and the 
accuracy of diagnosis and prognosis in psychiatry. We review three 
types of computational approaches and their utility for precision 
psychiatry: (1) theory-driven approaches, such as computational 
modeling, which have shown utility as novel phenotyping tools 
that may increase the precision of neurocognitive phenotyping, 
refine diagnosis, and aid intervention selection; (2) hybrid 
approaches, such as joint modeling and adaptive design optimization, 
which increase the efficiency and reliability of neurocognitive 
phenotyping; and (3) data-driven approaches using various machine 
learning methods that are particularly useful for predictive model-
ing, stratification, classification, and biotyping in psychiatry. We 
focus more narrowly on the application of these approaches to 
substance use disorders (SUD), where we attempt to map them 
on current RDoC frameworks for addictions. We argue that 
increasing the precision of clinical phenotyping by integrating 
genetically informed personality, neurocognitive, and neuroimag-
ing approaches within a computational framework will be critical 
for identifying etiological markers of different biotypes of addiction 
that could be targeted by modular combinations of behavioral, 
neurostimulatory, and pharmacological interventions, personalized 
to individual multivariate computational profiles. 

2 Theory-Driven Approaches: Computational Modeling and Computational 
Phenotyping 

The human brain has long been considered the archetype of com-
putation [27], as its key function is to compute by storing and 
summarizing information and using that information to make pre-
dictions about the future [28, 29]. The past 10 years have witnessed 
the emergence of the discipline of computational psychiatry [30],



which seeks to characterize mental dysfunction in terms of aberrant 
computations [31]. Theory-driven computational approaches such 
as computational modeling have been proposed to provide a new 
paradigm for understanding psychopathology [28], which can help 
address the “explanatory gap” and lack of suitable levels of descrip-
tion that link findings at the molecular level to clinical entities, such 
as addictions and other psychiatric disorders [31, 32]. 
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In the field of substance use disorders, computational modeling 
has been applied primarily to the study of decision-making, as 
impulsive and maladaptive decision-making is considered one of 
the core neurocognitive deficits of individuals with SUD and other 
addictive disorders [33, 34]. Indeed, many of the diagnostic criteria 
for SUD could be considered directly or indirectly related to 
abnormalities in decision-making (e.g., persistent drug use despite 
negative consequences, consuming larger amounts and for longer 
period of time than intended, persistent desire, and sense of com-
pulsion to take the substance). In real life, individuals with SUD 
show profound impairments in judgment and decision-making, 
characterized by a tendency to choose immediate rewards, at the 
expense of often devastating negative consequences in the future. 
Such real-life impairments are typically measured with neurocogni-
tive tasks that mimic major life contingencies in a realistic manner, 
such as gambling and discounting tasks that involve different 
reward and punishment contingencies [34, 35]. Abnormally steep 
delay discounting rates, indicating preference for immediate but 
smaller rewards, have been reliably associated with both quantity-
frequency of use and with severity of SUD [35], including alcohol 
[36], nicotine [37], heroin [38–40], and cocaine use disorders 
[38, 41]. The neural systems probed by delay discounting para-
digms are also well-known; therefore, delay discounting is a 
promising candidate for the RDoC approach [42, 43]. 

It is important to study decision-making with different decision 
tasks, to obtain converging evidence about the cognitive and affec-
tive mechanisms underlying decision-making deficits [44]. Of the 
various decision tasks used in the literature, the Iowa Gambling 
Task (IGT) [33, 45] is one of the oldest, originally developed in the 
early 1990s as an attempt to capture the prominent difficulties in 
day-to-day functioning displayed by patients with lesions of the 
ventromedial prefrontal cortex (vmPFC), who otherwise showed 
no demonstrable deficits on standard intellectual and neuropsycho-
logical tasks. It was designed to simulate real-life decision-making, 
defined as the ability to select the most advantageous course of 
action from a set of possible alternative behaviors, where decision 
makers learn by trial and error to choose among four decks of cards 
that produce both wins and losses. Impaired performance on the 
task is taken as an indicator of insensitivity to future consequences 
or “myopia for the future” [45]. The task has become one of the 
most widely used decision tasks in the addiction literature and is



one of the earliest for which computational cognitive models were 
developed. The first cognitive model for the IGT was the Expec-
tancy Valence Learning (EVL) model, developed by Busemeyer and 
Stout [46]. Since then, a number of additional models have been 
developed to better capture the behavioral patterns of the task, such 
as the Prospect Valence Learning (PVL) model [47], the Value-
Plus-Perseverance (VPP) model [48], and most recently the 
Outcome-Representation Learning (ORL) model [49]. Though 
individuals with SUD are consistently impaired on the task 
[33, 50–58], it has been difficult to discern differences in 
decision-making between people with different types of SUD or 
with different comorbid disorders based solely on the standard 
performance indices, because even though the task has high sensi-
tivity to decision-making impairments in individuals with SUD, it 
has proven equally sensitive to capturing decision-making impair-
ments in patients with other externalizing disorders such as antiso-
cial personality disorder, psychopathy, and ADHD [57, 59–61]. 
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Though gambling and discounting tasks are ecologically valid 
and capture important aspects of real-life functioning, they are 
designed to be complex and involve numerous motivational, 
learning, and choice processes [44, 46]. Similar to the heterogene-
ity of substance use and other psychiatric disorders, there is an 
inherent heterogeneity in the computational processes involved in 
such tasks, reflecting different mechanisms underlying decision-
making, such as sensitivity to reward, sensitivity to loss, risk aver-
sion, risk tolerance, ambiguity tolerance, and exploration/exploita-
tion, among others. Consequently, impaired performance on the 
tasks may have many different causes [44]. Similar to how the 
current diagnostic classification system does not capture the numer-
ous etiological mechanisms underlying psychiatric disorders, tradi-
tional neurobehavioral performance indices on these tasks do not 
capture the different underlying causes of impaired performance. 
Computational modeling of such cognitively complex tasks have 
proven much more informative in this regard, as they deconstruct 
neurobehavioral performance into underlying latent processes, and 
use the parameter estimates of these processes to understand the 
specific mechanisms underlying the neurocognitive deficits mani-
fested by different clinical populations [46, 50, 62]. 

Findings in the addiction literature consistently reveal that 
computational model parameter estimates of different psychologi-
cal processes involved in decision-making are more sensitive to 
dissociating substance-specific and disorder-specific neurocognitive 
profiles than standard neurobehavioral performance indices across a 
variety of decision tasks [49, 50, 62–67]. For example, computa-
tional model parameters of the IGT robustly discriminate between 
opiate and stimulant-dependent individuals even in protracted 
abstinence [49, 50]. Despite no group differences on the tradi-



tional performance index on the task (net score), computational 
modeling has uncovered notable differences in the underlying pro-
cesses driving the decision-making performance of different types 
of substance users: reduced sensitivity to loss in opiate users 
[49, 50] vs increased sensitivity to reward [50] and preference for 
switching selections (exploration) in stimulant users [49]. 
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Unlike the IGT, which measures decision-making under uncer-
tainty and ambiguity and involves learning by trial and error, the 
Cambridge Gambling Task (CGT) is a probabilistic task measuring 
decision-making and risk-taking outside of a learning context, 
where no uncertainty is involved [68]. Though not as extensively 
studied in the addiction field as the IGT, findings are consistent and 
reveal decision-making impairments in different types of substance 
users [60, 66, 68–71]. Romeu et al. [66] recently developed the 
first computational model for the task, which, similar to findings 
with the IGT, revealed differences in decision-making between 
healthy controls and individuals with different types of SUD 
(“pure” heroin, “pure” amphetamine, polysubstance) that were 
not observable with traditional metrics. All three types of substance 
users were characterized by lower sensitivity to loss and higher delay 
aversion than controls, though mono-substance dependent (i.e., 
“pure”) heroin and amphetamine users were more sensitive to loss 
than polysubstance users. In addition, pure amphetamine users 
showed lower probability distortion than pure heroin users and 
controls, reflecting greater willingness to make less optimal choices. 
These findings were recently replicated by Todesco et al. [72] who 
revealed lower sensitivity to loss and lower probability distortion in 
polysubstance users relative to controls. Computational modeling 
of another decision task, the Balloon Analogue Risk Task (BART; 
[73]) measuring risky decision-making, revealed similarly reduced 
loss aversion and increased risk preference in heroin users [65]. The 
application of computational models may therefore elucidate the 
unique effects of various features of addictive disorders, such as the 
influence of specific drug classes or comorbid psychopathology. 
This may help identify neurocomputational biotypes of individuals 
with SUD, characterized by unique and computationally distinct 
decision-making deficits and accompanying neural circuit abnorm-
alities. Such parameters of gain- and loss-related sensitivity show 
significant potential as novel “computational signatures” for differ-
ent types of SUD and other forms of psychopathology, which could 
help refine neurocognitive addiction phenotypes, identify compu-
tational biomarkers, and develop more rigorous models of 
addiction. 

Computational phenotypes have already led to many new 
insights into the neurobehavioral mechanisms underlying sub-
stance use and addictive disorders, but their clinical utility has 
only recently started to be considered [30]. To date, theory-driven



computational approaches have demonstrated clinical utility pri-
marily via back translation from “clinic-to-computation,” by 
demonstrating how specific disorders map onto specific computa-
tional processes [74]. In contrast, forward translation, from com-
putation to clinic, is still rare [74] and is the next frontier in 
computational research. Clinically, theory-driven computational 
phenotypes hold promise for improving treatment success by 
providing novel actionable targets for prevention and intervention 
and increasing the precision and efficacy of treatment interventions 
for addictive disorders [8]. For example, delay discounting has been 
successfully targeted by novel interventions such as episodic future 
thinking, which have resulted in reductions not only in delay dis-
counting but also in substance use [75–77]. The utility of compu-
tational modeling to precision psychiatry has recently been shown 
in a treatment context, where computational methods were able to 
capture treatment-sensitive aspects of decision-making, such as 
changes in loss sensitivity that were not accessible via traditional 
methods [72]. Further, dynamic changes in specific computational 
parameters of decision-making over time, such as daily fluctuations 
in ambiguity tolerance and risk preference, have been shown to 
predict imminent relapse in abstinent opioid-dependent individuals 
[63]. This suggests that computational parameters may have prog-
nostic and diagnostic utility to inform not only with whom to 
intervene, but also when to intervene. Such computational signa-
tures and within-person fluctuations in computational parameters 
could provide a dynamic characterization of different addiction 
trajectories and transitions between different stages of 
addiction [78]. 
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2.1 Joint Modeling Novel computational modeling approaches such as “joint model-
ing” aim to link behavior across different tasks and measurement 
modalities [64, 79]. In many cases, multiple neurocognitive tasks 
and cognitive models purport to describe similar processes, but it is 
difficult to evaluate whether they measure the same latent processes 
or traits. To address this question, recent studies have modeled 
behavior across decision tasks by connecting cognitive model para-
meters from different tasks to common latent constructs, such as 
impulsivity. For example, a recent joint modeling study of the CGT 
and the Monetary Choice Questionnaire (MCQ) of delay discount-
ing [64] revealed that the tasks appear to index separate neurocog-
nitive dimensions of impulsivity, with the MCQ indexing choice 
impulsivity [80], whereas the CGT tapped on action impulsivity 
[81]. Further, the temporal discounting parameter on the delay-
discounting task (MCQ) was more closely related to trait measures 
of externalizing psychopathology and aggression, whereas tempo-
ral discounting on the CGT was related to neurobehavioral 
response inhibition failures [64]. A key feature of the joint



modeling approach is that it allows linking neurobehavioral data 
directly to neural activity [79, 82–84]; therefore, joint modeling 
holds promise for linking behaviors not only across different tasks, 
but also across different domains of functioning (e.g., neurocogni-
tive, neurocircuitry) [79]. Computational models have also been 
used to guide model-based neuroimaging approaches and by 
providing a framework to study neural mechanisms of various 
cognitive processes, show distinct advantages, and offer insights 
into how a particular process is implemented in the brain as opposed 
to merely identifying where the process is located [85, 86]. In 
general, joint models exhibit greater predictive validity than neural 
or behavioral data alone, allowing more precise and mechanistically 
informative characterization of neurocognitive profiles and neural 
function associated with different types of SUD and psychiatric 
disorders [79]. 
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Within the framework of the three stages of addiction [3], 
computational modeling parameters that parse different neurocog-
nitive functions such as decision-making, could increase under-
standing of the role of different decision-making processes at 
different stages of the addiction cycle and mapping these processes 
to the ANA domains. For instance, increased sensitivity to reward 
may most closely characterize the binge/intoxication stage of addic-
tion and the incentive salience ANA domain, driven by positive 
reinforcement mechanisms involving preferentially the dopaminer-
gic and opioid systems. In contrast, reduced sensitivity to loss 
(or reduced loss aversion) may better characterize the withdrawal/ 
negative affect stage of addiction and the negative emotionality ANA 
domain, driven by negative reinforcement mechanisms that prefer-
entially engage the extended amygdala and its projections. The 
executive function ANA domain and the preoccupation/anticipation 
stage of addiction may be characterized by an imbalance between 
model-based and model-free decision-making systems [87] and a 
conflict between Pavlovian and instrumental systems [88]. Using 
computational approaches to characterize and map the ANA 
domains promises to identify novel actionable targets for preven-
tion and treatment of SUD that may supplement existing programs 
and inform the development of new programs [8, 89–91]. The 
application of computational models may also elucidate the specific 
effects of various features of addictive disorders, such as the influ-
ence of specific drug classes or comorbid externalizing and inter-
nalizing psychopathology, thereby leading to identification of 
subtypes of individuals with SUD, characterized by specific types 
of cognitive and affective deficits. This could further increase the 
validity of the tasks as sensitive and specific measures of distinct 
“computational signatures,” which could be targeted by interven-
tions tailored to the specific type of neurocomputational risk 
profile.
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3 Hybrid Approaches/Adaptive Design Optimization 

While computational tools have increased the knowledge extracted 
from neurocognitive tasks, there are surprisingly few high-quality 
assays for monitoring and characterizing neurocognitive domains. 
One of the major problems in identifying reliable biomarkers of 
addiction and other psychiatric disorders is the low reproducibility 
of neurocognitive findings and the surprisingly low test-retest reli-
ability of well-established and widely used neuropsychological 
tasks. Computational modeling holds promise for addressing the 
“Reliability Paradox,” or the failure of robust cognitive paradigms 
to produce reliable individual differences [14]. For example, a 
recent study that compared traditional neurobehavioral indices 
from working memory, priming, associative interference, and 
impulsivity tasks against computational models of these tasks 
revealed that computational model parameters show substantially 
better test-retest reliability than the standard behavioral indices, 
increasing reliability by as much as 0.8 on a -1 to 1 scale 
[15]. Advances in Bayesian statistics and machine learning offer 
algorithm-based ways to generate optimal and efficient experimen-
tal designs so as to minimize uninformative and wasted experimen-
tal trials [92]. Bayesian computational approaches can improve not 
only the reliability but also the efficiency of neurocognitive assess-
ment and help develop RDoC measures that provide more rapid 
and precise behavioral markers of different types of SUDs. One 
such approach is adaptive design optimization (ADO) [93], which 
aims to find the most informative design for estimating model 
parameters on the fly during an experiment. ADO is a “smart” 
search machine learning algorithm, whose search is guided by one 
or more computational models, depending on the objectives of the 
research. When comparing competing models (e.g., of decision-
making), it searches for the stimulus that is most likely to discrimi-
nate the models. When its goal is to estimate model parameters, it 
presents the stimulus that is expected to generate the most infor-
mative response for parameter estimation. The model(s), combined 
with participants’ responses, are updated at each trial to optimize 
stimulus selection with the goal of achieving efficiency, precision, 
and reliability. This approach has a promising track record for 
improving the efficiency and precision of psychiatric assessment 
[94–96]. ADO is a model-based machine-learning approach to 
optimization in the sense that it requires a quantitative model that 
predicts experimental outcomes based on the model’s parameters 
and design variables. ADO has been successfully applied for identi-
fying best-fitting models in gambling tasks [97] and delay discount-
ing tasks [98], as well as to optimally assess visual acuity [96]  in



neurotypical individuals. All of these studies demonstrate that ADO 
substantially reduced the number of trials required to do model 
comparisons or parameter estimation. This indicates that ADO may 
significantly increase task efficiency, reduce the length and burden 
of administration of current RDoC assessment batteries, and facili-
tate their wider implementation in clinical practice. 
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ADO has also been shown to dramatically increase the test-
retest reliability of common tasks compared to non-ADO methods. 
For example, a recent ADO study [99] revealed 0.95 and higher 
test-retest reliability of the discounting rate within only 10–20 trials 
(under 1–2 min of testing), which captured approximately 10% 
more variance in test-retest reliability, was 3–5 times more precise, 
and 3–8 times more efficient than the staircase method. Of note, 
ADO shows excellent reliability in different populations, including 
college students, patients with SUDs, and online Amazon MTurk 
workers [99]. Critically, ADO task parameters demonstrate lin-
kages with real-world substance use outcomes akin to computa-
tional parameters from longer and more burdensome tasks. For 
example, preliminary findings suggest that model parameters 
from ADO-based tasks could predict future cigarette use, which 
further suggests that ADO is a promising approach for assessing 
and predicting addictive and other psychiatric conditions [100]. 

4 Data-Driven Approaches/Machine Learning 

The scientific community is always looking for well-powered and 
unbiased methods for identifying features of interest. Combining 
neurocomputational signatures with clinical, behavioral, neuroim-
aging, genetic, and other types of data in large multivariate datasets 
promises to increase the interpretability of neurocognitive pheno-
typing and increase the precision of prediction and classification in 
psychiatry [101]. Rapid improvements in computational resources 
and the quality of big data nowadays allows combining multiple 
sources of data in large datasets and freely sharing the data and tools 
with the scientific community. This has led to rapid development of 
data-driven computational methods using various machine learning 
(ML) approaches that have increased our understanding of the 
multi-dimensional features and associated neural substrates and 
genetic underpinnings of different forms of psychopathology. 
Machine-learning has found steadily increasing applications in the 
addiction literature. Supervised ML methods have been used to 
predict adolescent alcohol use [102] and misuse [103], distinguish 
between smokers and non-smokers [104–106], between people 
with and without cocaine use disorder [107, 108] or cannabis use 
disorder [109–111], and between people with different types of



SUD [107, 112–116]. These ML studies have identified multivari-
ate neurobiological, neurocognitive, psychiatric, and personality 
profiles that differentiate addictions to different classes of drugs. 
Some studies have identified common features for multiple SUD, 
emphasizing the trans-diagnostic utility of certain neurocognitive 
and personality characteristics that may increase vulnerability to 
addiction in general, regardless of drug class. For example, higher 
delay discounting [113] and impulsive/antisocial features of psy-
chopathy [112] have emerged as significant trans-diagnosing mar-
kers classifying alcohol-, opiate-, and stimulant use disorders. In 
addition, delay discounting has been identified as the most promi-
nent predictor of successful smoking cessation [117], underscoring 
its significant role in the recovery stage of the addiction cycle. On 
the other hand, substance-specific markers classifying addictions to 
different classes of drugs have also been identified. For example, 
Ahn and Vassileva [112] identified unique multivariate personality, 
psychiatric, and neurocognitive features that classified opiate and 
stimulant addictions with a high degree of accuracy. Amphetamine 
users were (uniquely) characterized by higher sensation-seeking, 
hostility, response deliberation time, and delay discounting. Heroin 
users were uniquely characterized by attention deficits, impaired 
decision-making, lower risk-taking, callous/unemotional features 
of psychopathy, impulsivity under negative emotional states (“neg-
ative urgency”), depression, anxiety, and aggression. Out of 54 fea-
tures, the impulsive/antisocial factor of the Hare Psychopathy 
Checklist (PCL:SV) was the strongest and only common classifica-
tion marker of both heroin and amphetamine dependence 
[112]. Others have used connectome-based modeling to identify 
substance-specific neural networks involved in abstinence from 
opiates and cocaine [115], and brain morphology to differentially 
predict alcohol, tobacco, and cannabis use initiation in adolescents 
[114], highlighting the importance of studying both common and 
unique markers of different types of SUD. 
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A few large multidisciplinary collaborations have produced 
large phenotypically rich datasets that have served as key drivers 
and accelerators of data-driven computational research. The IMA-
GEN consortium [118] is a multidisciplinary European collabora-
tion in imaging genomics aiming to detect longitudinal associations 
between genotype and brain structure and function and disentangle 
gene–environment interactions. The Human Connectome Project 
[119, 120] is another large imaging genetics study that uses multi-
modal imaging technology to understand the network of human 
brain functions and map its neuroanatomical connectivity patterns. 
The Enhancing Neuroimaging Genetics through Meta-Analysis 
(ENIGMA) consortium [121] brings together researchers in imag-
ing genomics, neurology, and psychiatry, and involves 30 working



groups spanning 185 institutions in 35 countries worldwide to 
understand brain structure and function in different psychiatric 
and neurological disorders. The Adolescent Brain Cognitive Devel-
opmentSM (ABCD) Study [122–125] is the largest (N = 11,875) 
longitudinal study of brain development in the United States, 
examining risk and resilience factors associated with substance use 
and other psychiatric and physical outcomes from middle child-
hood to early adulthood. These research initiatives have been sup-
plemented by government-sponsored big genomics projects such 
as the UK Biobank in the United Kingdom with over 500,000 
participants [126] and All of Us in the United States created by 
President Obama’s Precision Medicine Initiative [127], which aims 
to recruit over 1 million Americans. These large citizen-science 
projects have shed light on numerous psychological facets of cog-
nitive, social, emotional, and physical development and have gen-
erated vast amounts of high-dimensional data that requires 
increasingly sophisticated methods for processing and analysis. 
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Unsupervised ML methods such as clustering have proven to 
be especially useful for data-driven disease subtyping and identifica-
tion of biotypes. Biotypes are subtypes of a broader syndrome or 
disorder defined by distinct aggregations of behavioral, mood, and 
genetic markers with specific dysfunctions in the functional and 
structural connectivity of large-scale neural circuits that govern 
mood, behavior control, and self-reflective functions 
[128, 129]. Biotypes are increasingly proposed as an alternative to 
clinical phenomenology in the classification of disease because their 
organizing features center on neurobiological mechanisms rather 
than differentiations based on broad symptomatology. Though 
applied to other psychiatric disorders, such as anxiety, depression 
[23, 129, 130], schizophrenia, and bipolar disorder [128, 131– 
133], the biotype approach is still relatively unexplored in the study 
of addictions. Few studies to date have applied this approach to 
SUD and other addictive disorders, which is a significant gap in the 
literature. Zhu et al. [134] used connectivity features from resting 
state fMRI to identify three biotypes of alcohol misuse—mild, 
comorbid, and moderate—which demonstrated significant differ-
ences in alcohol use frequency and connectivity involving the fron-
tal, parietal, subcortical, and default mode networks. To 
understand comorbidities between addictions and the transition/ 
replacement of one addiction form with another, Zarate et al. [135] 
conducted a network analysis of 10 forms of addictive behaviors 
(alcohol, drugs, tobacco, sex, online gambling, Internet use, Inter-
net gaming, social media use, shopping, and exercise). Findings 
suggest that most forms of addictive behaviors are uniquely differ-
ent and that there are clusters of addiction symptoms (e.g., drug 
and alcohol misuse, gambling) that have particularly strong influ-



ence on the entire network of addictive behaviors. Developing a 
taxonomy of neurocomputational addiction biotypes based on the 
ANA framework that maps onto neural circuits involved in addic-
tions may facilitate the translation of empirical data into clinical 
practice by informing the development of novel, innovative treat-
ment alternatives that are individually tailored to specific subgroups 
of individuals who share common addiction vulnerabilities. The 
biotype approach has used neuroimaging, genetic, physiological, 
clinical, cognitive, environmental, and other sources of data for 
classification and prediction. This approach could benefit substan-
tially from the inclusion of theoretically derived “computational 
signatures” of decision-making and other cognitive and affective 
functions implicated in addiction into the machine learning models 
along with other relevant sources of data to identify neurocompu-
tational biotypes, which, in turn, could be targeted by modular 
interventions tailored to individual neurocomputational risk 
profiles. 
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5 Summary and Conclusion 

Computational approaches have vast potential for optimizing pre-
cision psychiatry at a few different levels (Fig. 1). Theory-based 
approaches such as computational modeling and joint modeling 
could be integrated into multimodal assessments of RDoC con-
structs of mechanistic significance for addictions and other psychi-
atric disorders. Novel interventions could be developed that target 
the computational signatures (e.g., reward sensitivity, loss aversion, 
ambiguity tolerance, etc.) identified by theory-based approaches. 
Hybrid computational approaches like ADO could help develop 
“smart” assessment batteries, comprised of efficient, reliable, and 
precise neurocognitive tasks with superior psychometric properties. 
These batteries could be easily adapted to web-based platforms and 
mobile apps, as well as in longitudinal designs using ecological 
momentary assessment to track daily within-subject variability. 
Data-driven computational approaches could help develop novel 
mechanistic taxonomies and identify neurocomputational biotypes 
of specific psychiatric disorders, which could help guide the choice 
of intervention(s). Translating these computational approaches to 
clinical practice can be facilitated by open-source and user-friendly 
software packages, such as hBayesDM (hierarchical Bayesian model-
ing of decision-making tasks) [136] that offers computational 
models of an array of decision tasks, easyML (easy Machine 
Learning) [137] for machine learning approaches, and ADOpy 
[138] for adaptive design optimization.
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Fig. 1 A theoretical example of potential applications of theory-driven, data-driven, and hybrid computational 
approaches for assessment and treatment of substance use disorders
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