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h i g h l i g h t s

! Resting EEG in non-deprived smokers may be a biomarker for nicotine use severity.
! Smokers report higher impulsiveness and lower conscientiousness than nonsmokers.
! Sensory hedonia may play a role in nondaily smoking.

a b s t r a c t

Objectives: Resting EEG is sensitive to transient, acute effects of nicotine administration and abstinence,
but the chronic effects of smoking on EEG are poorly characterized. This study measures the resting EEG
profile of chronic smokers in a non-deprived, non-peak state to test whether differences in smoking
behavior and personality traits affect pharmaco-EEG response.
Methods: Resting EEG, impulsiveness, and personality measures were collected from daily smokers
(n = 22), nondaily smokers (n = 31), and non-smokers (n = 30).
Results: Daily smokers had reduced resting delta and alpha EEG power and higher impulsiveness (Barratt
Impulsiveness Scale) compared to nondaily smokers and non-smokers. Both daily and nondaily smokers
discounted delayed rewards more steeply, reported lower conscientiousness (NEO-FFI), and reported
greater disinhibition and experience seeking (Sensation Seeking Scale) than non-smokers. Nondaily
smokers reported greater sensory hedonia than nonsmokers.
Conclusions: Altered resting EEG power in daily smokers demonstrates differences in neural signaling
that correlated with greater smoking behavior and dependence. Although nondaily smokers share some
characteristics with daily smokers that may predict smoking initiation and maintenance, they differ on
measures of impulsiveness and resting EEG power.
Significance: Resting EEG in non-deprived chronic smokers provides a standard for comparison to peak
and trough nicotine states and may serve as a biomarker for nicotine dependence, relapse risk, and
recovery.
! 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights

reserved.

1. Introduction

The majority of smokers meet DSM-IV criteria for dependence,
with daily use of multiple cigarettes being the most common pat-
tern of use and rapid relapse being the most likely outcome of
attempts at cessation (Hughes et al., 2004; Donny and Dierker,
2007; Zhu et al., 2012). Nevertheless, a significant proportion of
smokers do so intermittently and do not show signs of nicotine
dependence, an established diagnostic feature in smoking litera-
ture and randomized clinical trials that is absent from the
DSM-IV/5 diagnostic lexicon (Coggins et al., 2009; Baker et al.,
2012). The remarkable ability of intermittent smokers to use a
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highly addictive substance without transitioning to nicotine
dependence may depend on processes that would be of great inter-
est in both prevention and treatment development. Consequently,
the neurophysiological and personality factors that differentiate
these two groups of smokers have received increasing interest
(Shiffman et al., 2009, 2012; Kvaavik et al., 2014; Rass et al.,
2014). The electroencephalogram (EEG) is a measure of synchro-
nized neural activity that is particularly promising as a sensitive
measure of the acute and chronic effects of nicotine use (Lerman
et al., 2009). To date, however, most studies have focused on the
effects of acute nicotine intoxication, rather than on effects of
chronic use on EEG, and none of these studies have contrasted
daily and intermittent (non-daily) smokers. It is important to con-
sider the resting state EEG of non-deprived smokers to more thor-
oughly understand whether nicotine’s effects on functioning
represent transient changes due to acute drug effects, reflecting
amelioration of withdrawal or reversal of pre-existing deficits, or
more lasting changes (due to chronic smoking).

Nicotine use is likely to impact oscillatory activity that is
reflected in the scalp EEG. Regular nicotine use can alter the distri-
bution or functionality of brain nicotinic acetylcholine receptors
(nAChR), which play a significant role in neuronal communication
within and across brain areas (Kadoya et al., 1994; Ghatan et al.,
1998; Mansvelder et al., 2006; Bertrand, 2010). nAChR modulation
of the velocity of action potential conduction, which alters the
functional timing of electrical activity, may affect excitatory and
inhibitory neuronal networks involved in thalamocortical trans-
mission, sensorimotor interaction (e.g., gamma synchrony), and
memory formation (e.g., theta synchrony) (Forgacs and
Bodis-Wollner, 2004; Mansvelder et al., 2006; Kawai et al., 2007;
Bertrand, 2010; Rutishauser et al., 2010). Preclinical studies have
found that systemic low dose nicotine administration decreases
alpha oscillatory power and enhances beta and gamma power in
the cortex and VTA of nicotine naïve and experienced freely mov-
ing rats (Lenoir and Kiyatkin, 2011; Lenoir et al., 2013); higher
doses produced a decrease in theta, delta, alpha, and beta-1 power
in nicotine naïve rats (Ferger and Kuschinsky, 1997). Several stud-
ies have measured non-spontaneous EEG activity by presenting
stimuli at different frequencies to evoke EEG synchrony. A study
of auditory evoked EEG response in anesthetized, nicotine-naïve
rodents showed enhanced high frequency (40 Hz) response follow-
ing nicotine administration, attenuation of this enhanced response
during administration of nicotine and NMDA antagonist MK801 or
nicotine receptor (a4b2) antagonist DHbE, and a reduced response
with administration of MK-801 alone (Sivarao et al., 2013).

Human studies of resting EEG report that smoking or nicotine
administration typically produces a decrease of slow wave EEG
power (i.e., delta, theta, low alpha) and an increase of high fre-
quency power (i.e., alpha, beta, gamma) in nicotine-deprived
smokers (e.g., Mansvelder et al., 2006; Domino et al., 2009;
Fisher et al., 2012). In contrast, smoking abstinence and with-
drawal have been associated with a shift of the normal EEG distri-
bution to more power at lower frequencies relative to higher
frequencies, referred to as EEG deactivation or slowing. Nicotine’s
direct and indirect effects on dopaminergic neurons may further
influence glutamatergic and GABAergic activity, resulting in
changes to oscillatory activity in cortical circuitry (Ford et al.,
2007; Weinberger and Dostrovsky, 2011). Dopamine receptor
binding has been positively correlated with cigarettes per day
and nicotine dependence scores (Weerts et al., 2014). Haloperidol
antagonism of dopamine D2 receptors was found to partially block
EEG-activating effects of nicotine (i.e., shifting EEG distribution to
having more power at higher frequencies relative to lower fre-
quencies) and alter smoking behavior (Caskey et al., 1999;
Walker et al., 2001). Differences in the DRD2-A1 allele (i.e., D2

expression) have been associated with a greater reduction of EEG

power during smoking abstinence (Gilbert et al., 2004). Because
scalp recorded EEG is primarily generated by post-synaptic poten-
tials in the cortex, this technique should be well suited to detect
changes in oscillatory activity at different frequency ranges.

The only two studies that measured resting EEG in
non-deprived chronic smokers were underpowered to find effects
due to small sample sizes and sparse electrode montages (Knott
and Venables, 1977; Pickworth et al., 1997). Most previous studies
of nicotine effects have focused on the pharmaco-EEG profile of
acute smoking or nicotine administration. In deprived smokers,
acute administration produces a shifting from slow wave EEG
activity associated with relaxed wakefulness or drowsiness (i.e.,
delta, theta, low alpha) to high frequency activity associated with
arousal or intense mental/emotional activity (i.e., high alpha, beta,
gamma), similar to studies of other stimulants (Cook et al., 1995;
Knott et al., 1999; Domino, 2001; Pickworth et al., 2003;
Mansvelder et al., 2006). Overnight and longer abstinence (3–
31 days) from smoking produces consistent reduction in EEG
power that is associated with decreased alertness, worsened cogni-
tive performance, and concurrent withdrawal symptoms (e.g.,
increased craving for cigarettes, negative affect, appetite dysregu-
lation) (Gilbert et al., 2004). Some argue that these changes in neu-
ral activity represent a normalization of the withdrawal state,
rather than enhancement of electrocortical activation, citing evi-
dence that EEG activation does not surpass that of non-smokers
and that non-smokers show no change in slow-wave activity fol-
lowing nicotine administration (Knott, 2001). Other studies found
increased dominant alpha frequency or regional power following
nicotine administration in non-smokers, possibly reflecting activa-
tion of approach/motivational circuitry (Foulds et al., 1994; Fisher
et al., 2012).

Measuring resting EEG in cigarette smokers with different use
and dependence profiles in comparison with non-smoker controls
could reveal a potential biomarker for nicotine dependence, yet the
effects of smoking and nicotine dependence on resting EEG have
not been thoroughly investigated. Several studies suggest that rest-
ing EEG changes persist past early withdrawal states. In two stud-
ies, Gilbert and colleagues found that altered EEG power spectra
did not resolve after 31 days of abstinence (Gilbert et al., 1999,
2004). Additionally, Gilbert et al. found that higher baseline scores
on Fagerström Tolerance Questionnaire (Gilbert et al., 1999) and
the Fagerström Test for Cigarette Dependence (Gilbert et al.,
2004) were associated with larger quit-related decreases in EEG
power. In studies of other drugs, changes in specific frequency
bands have been associated with individual factors, such as drug
use frequency, dependence, family history of alcoholism, and ele-
vated feelings of euphoria (Parvaz et al., 2011). Finn and Justus
(1999) found that alpha EEG power was reduced in non-alcoholic
offspring of an alcoholic parent, suggesting decreased alpha power
may reflect risk for alcohol use disorder and possibly other sub-
stance use disorders (Finn and Justus, 1999). EEG studies of absti-
nent alcohol-dependent participants suggest that a greater
presence of higher frequency beta activity, representing
hyper-arousal of the central nervous system, corresponds with
quantity and frequency of alcohol intake and can distinguish
between ‘low’ and ‘moderate’ drinkers and between abstinent
and relapse-prone alcoholic individuals (Saletu-Zyhlarz et al.,
2004; Parvaz et al., 2011).

Both resting EEG response and smoking behavior may be asso-
ciated with addiction-related personality traits. Approach-related
(e.g., extraversion, novelty seeking, and impulsivity) and
avoidance-related (e.g., neuroticism and harm-avoidance) traits
have been associated with smoking initiation, progression, and
persistence behaviors (Terracciano and Costa, 2004; Munafo
et al., 2007; Iacono et al., 2008; de Wit, 2009). A behavioral mea-
sure of impulsive decision-making, the delay discounting task,
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has demonstrated a greater preference for smaller, more immedi-
ate rewards over larger, delayed rewards (i.e., steeper discounting)
in smokers vs. non-smokers. Preference for immediate reward has
been positively correlated with impulsivity, substance abuse his-
tory, and higher smoking rates and dependence (Bickel et al.,
1999; Kirby et al., 1999; Mitchell, 1999; Reynolds, 2004; Ohmura
et al., 2005; Heyman and Gibb, 2006; Johnson et al., 2007;
Sweitzer et al., 2008; Rezvanfard et al., 2010). Resting EEG findings
measuring the association between cortical arousal and personal-
ity traits (e.g., introversion/extraversion and impulsiveness) have
been mixed (Stough et al., 2001; Tran et al., 2001; Knyazev et al.,
2002; Schmidtke and Heller, 2004; Houston and Stanford, 2005;
Koehler et al., 2011). In one study, greater beta and gamma power
were correlated with higher impulsiveness and addiction severity
in participants with Internet addition (Choi et al., 2013).

Understanding resting EEG differences in non-deprived smok-
ers is important for more accurately interpreting the acute effects
of smoking or nicotine administration, acute and long-term nico-
tine withdrawal, and success of smoking intervention or cessation.
The purpose of this study was to investigate resting EEG response
in smokers (daily, nondaily) and non-smokers, and measure per-
sonality characteristics and impulsiveness as potential factors
influencing EEG response and smoking status. Smokers were
hypothesized to have altered EEG power spectra and higher scores
on measures of impulsiveness and sensation seeking compared to
non-smokers.

2. Methods

2.1. Participants

Thirty non-smokers, 31 nondaily smokers, and 22 daily depen-
dent smokers were recruited from the local community surrounding
Indiana University and paid for participation. Participants were
recruited as part of a study on nondaily smokers; additional meth-
ods and results are reported elsewhere (Rass et al., 2014). Groups
were classified according to the following criteria. Non-smokers
(1) smoked <10 cigarettes in their lifetime; and (2) had not smoked
in the past month. Nondaily smokers (1) smoked for P3 years; (2)
smoked <27 days per month for the past 6 months; and (3) in the
preceding 90 days, smoked on P10 days or smoked P20 cigarettes.
Daily smokers (1) smoked daily for P12 months; and (2) showed at
least moderate dependence (scored P4 on the Fagerström Test for
Cigarette Dependence, FTCD; Agrawal et al., 2011; Fagerström,
2012). Ex-smokers and participants currently attempting to quit
were not eligible for the study. Participants were excluded for a his-
tory of electroconvulsive therapy, neurological illness or serious
head trauma (including loss of consciousness >5 min), current anx-
iety disorder or major depression, use of psychotropic medications,
and current/past drug abuse/dependence (excluding nicotine) based
on DSM-IV criteria. Additional exclusion criteria included marijuana
use of more than once per week and consumption of more than 14
alcoholic drinks per week for males and 7 drinks per week for
females. All non-smokers were right-handed; two nondaily smokers
and three daily smokers were left-handed, and one nondaily smoker
and one daily smoker were ambidextrous. Participants received
detailed information about the study protocol and gave oral and
written informed consent. The Indiana University Institutional
Review Board approved the study.

2.2. Procedure

2.2.1. Interviews
To determine eligibility, participants completed phone screens,

which included questions about smoking behavior and the FTCD

questionnaire. Study eligibility was confirmed in the laboratory
using the demographics and screening module of the Structured
Clinical Interview for Axis-I disorders (SCID-I; First et al., 1997),
with follow-up questions from additional modules when neces-
sary. Study self-report questionnaires were mailed to eligible indi-
viduals, and participants completed them prior to or after the lab
session. Daily smokers were allowed to smoke prior to the EEG
recording; their blood-nicotine levels stabilized during 30–
45 min of set-up (Benowitz et al., 1988).

2.2.2. Smoking dependence
Several standard and widely used self-report measures of nico-

tine dependence were administered prior to the EEG procedure.
Nicotine dependence was measured using the Nicotine
Dependence Syndrome Scale (NDSS; Shiffman et al., 2004).
Smoking motives were measured using the Wisconsin Index of
Smoking Dependence Motives (WISDM; Smith et al., 2010). The
Physical Anhedonia Scale assessed capacity to experience pleasure
from natural reinforcers (i.e., physical sensation), with higher
scores indicating greater anhedonia (PAS; Chapman LJ, Chapman
JP. Revised physical anhedonia scale. Unpublished test. 1978).
Current nicotine withdrawal (Wisconsin Smoking Withdrawal
Scale, WSWS; Hendricks et al., 2006) and breath carbon monoxide
(CO; piCO+, Bedfont Scientific Ltd.) were measured before and after
the testing session.

2.2.3. Electrophysiological assessment
2.2.3.1. Procedure. The electroencephalogram (EEG) was sampled
continuously (1000 Hz sampling rate, 0.1–200 Hz bandpass filter)
from 34 Ag/AgCl electrodes that were mounted in a cap
(EasyCap, GmbH) and referenced to the nose (Gilbert et al.,
2000). Resting EEG was recorded in a sound-attenuated room for
three minutes during eyes closed and three minutes during eyes
open conditions. Two electrodes that were placed above and below
the participant’s left eye recorded bipolar vertical electrooculo-
gram (vEOG). Neuroscan SynAmps I digitized the EEG. Electrode
impedances were maintained at <10 kOhm.

2.2.3.2. EEG off-line processing. The recordings were segmented into
two-second epochs, baseline corrected for the entire epoch, and
corrected for ocular artifacts (Gratton et al., 1983). Epochs with
voltage exceeding ±100 lV at any site were automatically excluded
from further analyses. Power spectra used to measure signal power
(in lV2) were calculated by applying Fast Fourier Transform (FFT)
to the EEG. The transformed epochs were averaged and then
exported as the average value for each frequency band: Delta
(1.5–3.5 Hz), Theta (4–7.5 Hz), Alpha (8–12.5 Hz), Beta (13–
25 Hz) and Gamma (30–45 Hz) (Barry et al., 2011). Power values
were averaged across 28 electrode sites: left anterior (F7, F3, FT7,
FC3, C3), left posterior (P7, P3, PO7, PO3, O1), right anterior (F8,
F4, FT8, FC4, C4), right posterior (P8, P4, PO8, PO4, O2), midline
anterior (FPz, Fz, FCz, Cz) and midline posterior (CPz, Pz, POz,
Oz). Participants with fewer than 20 accepted epochs were
excluded from analysis: (a) three non-smokers and three nondaily
smokers from the eyes closed condition and (b) two non-smokers
and one daily smoker from the eyes open condition. Participants
with EEG power >4 SD from the sample mean in at least one fre-
quency condition were excluded from analysis: (a) two
non-smokers and one nondaily smoker from the eyes open
condition.

2.2.4. Personality and impulsiveness measures
The NEO 5-Factor Personality Inventory (NEO; Costa and McCrae,

1992; Terracciano et al., 2008) measured personality characteris-
tics. The Barratt Impulsiveness Scale-11 (BIS; Patton et al., 1995)
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and the Sensation Seeking Scale-V (SSS; Zuckerman et al., 1978)
measured factors related to impulsiveness.

The Delay Discounting Task measured temporal impulsivity and
future-oriented decision-making. In this task, participants were
asked to make hypothetical choices about money. Stimuli and pro-
cedures from a previous study (Ahn et al., 2011) were used. In
order to familiarize participants with the task, participants com-
pleted a practice block of six trials where they were offered a
choice between receiving a smaller, immediate reward (e.g., $30
now) or a larger, delayed reward (e.g., $60 in 8 months).
Immediately afterwards, the discounting task began with an initial
choice between an immediate reward ($400 now) and a delayed
reward ($800) at one of six different delays: 2 weeks, 1 month,
6 months, 1 year, 3 years, and 10 years. Each delay block consisted
of six trials, and order of the delays was randomized for each par-
ticipant. Across repeated trials within the same delay, the initial
amount of money available immediately ($400) was adjusted
based on a participant’s choice with the goal of identifying an indif-
ference point using an adjusting amount procedure (Green and
Myerson, 2004) continued for six trails within each delay. Once
an indifference point was identified at a given delay, the smaller,
immediate amount was reset to $400 and the process was repeated
using a new delay to the larger amount ($800).

2.3. Data analysis

2.3.1. EEG analysis
One-way analysis of variance (ANOVA) with between-subjects

factor of group was run for each EEG frequency. Effect size esti-
mates for analysis of variance were determined with partial g2

(partial g2 = .01 is a small effect size, .06 is a medium effect size,
and .14 is large effect size) (Kittler et al., 2007). Eyes closed and
eyes open conditions were analyzed separately.

2.3.2. Self-report measures
One-way analysis of variance (ANOVA) with between-subjects

factor of group was run for every dependent variable of
self-report measures of smoking dependence, personality, and
impulsiveness. Delay discounting was characterized using a single
parameter hyperbolic model: V = A/(1 + kD), in which a reward of
amount A received after a given delay D is discounted at an individ-
ualized rate k to a subjective value V (Mazur, 1987). We used iden-
tical procedures from a previous study (Ahn et al., 2011) to
estimate the discounting rate k. To briefly repeat them here, each
participant’s discounting rate was estimated by programming a
customized R code that searches for the k value minimizing the
root-mean-square error for all indifference points in six delays.
Because the distribution of individual-subject k values was
non-normal, a natural logarithm transformation was used to
approximately normalize the distribution of k across participants.
Participants with inconsistent performance across trials (positive
ln(k)) and a poor model fit (root-mean-square-error
(RMSE) = 347, which was >4 SD from the sample mean) were
excluded from analysis (n = 2 non-smokers). Indifference points
were compared using a mixed model ANOVA with a
within-subjects factor of delay (2 weeks, 1 month, 6 months,
1 year, 3 years, and 10 years) and between-subjects factor of group
(non-smokers, nondaily smokers, daily smokers). ANOVAs at each
delay tested significant interaction effects. Fisher’s Least
Significant Difference (LSD) tested significant main effects in post
hoc analysis.

Exploratory Pearson correlations were used to examine rela-
tionships between significant resting EEG frequencies, smoking
behavior among groups, and self-report measures.

3. Results

3.1. Demographics, smoking behavior, and subjective craving during
the testing session (Table 1)

Groups did not differ by age or sex. Daily smokers completed
less education than non-smokers (LSD p = .001). Daily smokers
had higher carbon monoxide (CO) levels than nondaily smokers
(LSD p < .001) and non-smokers (LSD p < .001) before and after
the session. CO and withdrawal post-session compared to
pre-session accounted for minimal differences in non-smokers
compared to daily smokers (LSD p = .011). Daily smokers had a
greater increase in craving than both nondaily smokers (LSD
p = .001) and non-smokers (LSD p = .002).

Analysis of smoking self-report measures revealed that daily
smokers initiated smoking earlier, smoked for a longer duration,
and smoked more frequently relative to nondaily smokers. Daily
smokers also reported higher levels of dependence and drive than
nondaily smokers. On the NDSS measure of dependence, daily
smokers reported significantly more drive (F(1,51) = 89.70,
p < .001), tolerance (F(1,51) = 13.06, p = .001) and a trend for conti-
nuity (F(1,51) = 3.47, p = .068) than nondaily smokers. On the
WISDM assessment of smoking motivation, daily smokers scored
higher on primary dependence motives (i.e., automaticity, craving,
loss of control, tolerance) than nondaily smokers (p’s < .001). Daily
smokers also scored higher on WISDM secondary dependence
motives, associated with auxiliary features of dependence, with
p’s < .001 on affective enhancement, affiliative attachment, cogni-
tive enhancement, cue exposure, sensory properties (p = .013),
and weight control (F(1,51) = 3.83, p = .056) than nondaily smok-
ers. Group differences on the PAS (F(2,79) = 5.09, p = .008) showed
that nondaily smokers reported less physical anhedonia than
non-smokers (LSD p = .002). One non-smoker was excluded from
PAS analysis due scoring >4 standard deviations (SD) from the sam-
ple mean.

3.2. Resting state EEG (Fig. 1)

3.2.1. Eyes closed
A main effect of group for the alpha frequency (F(2,74) = 3.254,

p = .044, partial g2 = .081) showed a decreased response in daily
smokers (M = 2.8, SD = 1.8) compared to non-smokers (M = 4.4,
SD = 2.1), LSD p = .014. Differences between non-smokers and non-
daily smokers (M = 3.5, SD = 2.4) did not reach significance, LSD
p = .132. No differences were found for other frequencies.

3.2.2. Eyes open
A main effect of group for the delta frequency (F(2,73) = 3.498,

p = .035, partial g2 = .087) showed a decreased response in daily
smokers (M = 2.7, SD = 1.0) compared to nondaily smokers
(M = 3.6, SD = 1.2), LSD p = .014, and non-smokers (M = 3.5,
SD = 1.6), LSD p = .038. A trend main effect of group for the theta
frequency (F(2,73) = 2.921, p = .060, partial g2 = .074) was driven
by a reduced response in daily smokers compared to the other
groups (nondaily smokers LSD p = .022; nonsmokers LSD
p = .075). No differences were found for other frequencies.

3.3. Self-report questionnaires (Table 2, Figs. 2–5)

3.3.1. NEO-Five Factor Inventory
Post hoc analyses revealed that both daily smokers and nonda-

ily smokers scored lower on conscientiousness than non-smokers
(p = .028; p = .009).
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3.3.2. Barratt Impulsiveness Scale
Post hoc analyses revealed that daily smokers scored higher on

the motor impulsiveness subscale than non-smokers (LSD p = .002)
and nondaily smokers (LSD p = .014). Daily smokers scored higher
overall than non-smokers (LSD p = .008).

3.3.3. Sensation Seeking Scale
Post hoc analyses revealed that higher SSS Total Score in daily

smokers (p = .006) and nondaily smokers (p = .055) compared to
non-smokers was driven by endorsing more disinhibition
(p = .021; p = .004) and experience-seeking (p = .021; p = .031)
items.

3.3.4. Delay discounting
Repeated measures ANOVA showed a group " delay interaction

(F(10,390) = 2.680, p = .042) and a main effect of delay
(F(5,390) = 473.524, p < .001). Post hoc analysis showed a trend
for higher indifference points in daily smokers than non-smokers
(LSD p = .060). Follow-up ANOVAs found differences at ten years
delay (F(2,78) = 4.032, p = .022) and marginal differences at three
years delay (F(2,78) = 3.030, p = .054. At 10 years delay, daily smok-
ers (LSD p = .012) and nondaily smokers (LSD p = .024) had higher
discounting rates than non-smokers. At 3 years delay, daily smok-
ers (LSD p = .032) and nondaily smokers (LSD p = .024) had higher
discounting rates than non-smokers. There was a trend (p = .10)
for steeper discounting rates for the smoking groups compared to
non-smokers (Fig. 5). Based on existing literature, we also com-
pared non-smokers with all smokers (combining daily and nonda-
ily smokers) using an independent t-test analysis (Bickel et al.,
1999; Mitchell, 1999; Baker et al., 2003; Reynolds et al., 2004).
The analysis showed that smokers discounted delayed rewards
more steeply than non-smokers (t(79) = 2.030, p = .046), which is
consistent with the previous reports.

Table 1
Demographics.

Non-smoker (n = 30) Nondaily smoker (n = 31) Daily smoker (n = 22) Analysis p

Sex Male n(%) 14 (47) 12 (39) 13 (59) X2
(2) = 2.15 .342

Age 25.2 (4.3) 23.9 (4.4) 27.2 (5.3) F(2,80) = 2.54 .085
Education (years) 16.6 (2.0)a 15.8 (1.6) 14.8 (1.6)b F(2,80) = 6.13 .003

Ethnicity n(%)
Caucasian 20 (67) 24 (77) 18 (82)
Asian 8 (27) 5 (16) 3 (14)
Black 2 (7) 1 (3) 1 (5)
Biracial 0 1 (3) 0

Age of smoking initiation 18.1 (1.7)a 16.3 (3.0) b F(1,51) = 7.88 .007
Smoking duration (years) 5.6 (4.4)a 9.4 (6.4)b F(1,51) = 6.69 .013
Cigarettes per day 3.6 (1.6)a 16.1 (6.1)b F(1,51) = 120.81 <.001
Smoking days per week 3.2 (1.4)a 7.0 (0)b F(1,49) = 160.93 <.001
Cigarettes per week 12.3 (9.0)a 113.0 (42.5)b F(1,49) = 154.71 <.001
FTCD total score 0.5 (0.9)a 5.4 (1.3)b F(1,51) = 272.52 <.001
NDSS total score #2.6 (0.7)a #0.1 (0.8)b F(1,51) = 89.70 <.001
WISDM total score 26.9 (8.7)a 48.4 (8.0)b F(1,51) = 84.00 <.001
PAS total score 12.4 (6.4)a 7.7 (5.0)b 10.4 (6.1) F(2,79) = 5.09 <.008

CO ppm
Pre 2.3 (1.4)a 3.7 (2.9)a 16.8 (10.8)b F(2,80) = 45.66 <.001
Post 2.0 (0.8)a 2.8 (1.9)a 14.9 (8.8)b F(2,80) = 57.49 <.001
Change score #0.3 (0.8)a #0.9 (1.3) #1.9 (3.9)b F(2,80) = 3.36 .040

WSWS
Craving pre 1.0 (2.4)a 7.0 (6.5)b 11.5 (7.5) c F(2,80) = 22.20 <.001
Craving post 0.8 (2.0)a 6.3 (6.1)b 15.0 (7.3) c F(2,80) = 43.56 <.001
Craving change score #0.2 (1.7)a #0.7 (3.9)a #3.5 (6.3)b F(2,80) = 7.41 .001
Total pre 44.7 (17.4) 54.7 (23.4) 56.4 (25.4) F(2,80) = 2.78 .109
Total post 49.6 (17.1)a 62.1 (23.8)b 65.7 (23.7)b F(2,80) = 4.18 .019
Total change score 4.9 (11.8) 7.4 (17.8) 9.3 (18.6) F(2,80) = 0.492 .613

Note. Values are M(SD) unless otherwise noted. Superscript letters represent post hoc analysis, with differing letters indicating significant group differences (p’s < .05). A cutoff
of eight to ten CO ppm has been recommended to differentiate smokers from non-smokers (SRNT, 2002). Weekly smoking rate data are missing from two nondaily smokers.
Abbreviations: FTCD = Fagerström Test for Nicotine Dependence; NDSS = Nicotine Dependence Syndrome Scale; WISDM = Wisconsin Index of Smoking Dependence Motives;
PAS = Physical Anhedonia Scale; WSWS = Wisconsin Smoking Withdrawal Scale.

Fig. 1. Resting state EEG power spectra for the eyes closed and eyes open
conditions across groups. Delta: 1.5–3.5 Hz; Theta: 4–7.5 Hz; Alpha: 8–12.5 Hz;
Beta (13–25 Hz; Gamma: 30–45 Hz. Error bars represent ±1 SEM. The following
symbols represent significance: !p < .06, *p < .05, **p < .01.
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3.4. Exploratory correlations

Pearson correlations explored the relationship between the
resting EEG measures that differed between groups. Pearson corre-
lation coefficients were computed for resting EEG eyes open (delta,
theta) and eyes closed (alpha) condition and their relationship
with smoking variables (smoking duration, cigarettes per week
(smoking days per week " CPD), CO levels pre-session, FTCD total,
NDSS total, WISDM total, and PAS total) for daily and nondaily
smokers as well as personality and impulsiveness measures (BIS
total, SSS total, NEO conscientiousness, and delay discounting

ln(k)) for all groups. Delta and theta activity showed significant,
negative correlations with cigarettes per week (r = #.40, p = .005;
r = #.31, p = .030), CO levels pre-session (r = #.38, p = .006;
r = #.34, p = .017), and FTCD total (r = #.34, p = .016; r = #.29,
p = .042). Delta activity also showed significant, negative correla-
tions with NDSS total (r = #.34, p = .015) and WISDM total
(r = #.29, p = .042). A Bonferroni correction for the smoking vari-
ables set significance levels at p < .002, negating the significant
exploratory correlations. No significant correlations were found
between resting EEG measures and impulsiveness variables.

4. Discussion

The present study measured resting EEG response in
non-deprived smokers and non-smokers. Compared to previous
studies investigating EEG of smokers without acute drug adminis-
tration or withdrawal effects (Knott and Venables, 1977; Pickworth
et al., 1997), this study had a larger sample size, included nondaily
smokers, included both eyes-closed and eyes-open recording con-
ditions, and used a denser electrode montage. Attenuated EEG
power in daily smokers compared to nonsmokers suggests alter-
ations of neural synchrony that may reflect risk factors for nicotine
use and dependence or effects of chronic nicotine use.

Daily smokers showed less alpha power during the eyes closed
condition and less delta power during the eyes open condition than
non-smokers. The findings of reduced alpha power in daily

Table 2
Results from self-report measures and delay discounting.

Non-
smoker
(n = 30)

Nondaily
smoker
(n = 31)

Daily
smoker
(n = 22)

F(2,80) p

NEO-Five Factor Inventory
Neuroticism 21.3 (8.4) 24.5 (8.1) 21.4 (9.6) 1.35 .265
Extraversion 29.5 (8.0) 31.1 (7.0) 28.9 (6.3) 0.68 .512
Openness 29.9 (8.0) 32.0 (6.7) 32.7 (7.9) 1.30 .279
Agreeableness 30.1 (6.8) 30.2 (5.8) 28.9 (6.9) 0.30 .741
Conscientiousness 34.4 (6.2)a 29.8 (6.2)b 30.2 (7.7)b 4.24 .018

Barratt Impulsiveness Scale
Attentional
impulsiveness

15.9 (3.1) 16.7 (3.4) 16.9 (4.3) 0.61 .547

Motor
impulsiveness

20.9 (3.6)a 21.6 (3.2)a 24.1 (4.1)b 5.48 .006

Non-planning
impulsiveness

21.4 (3.6) 23.2 (5.2) 24.0 (4.7) 2.34 .102

Total score 116.3 (14.2)a 123.0 (17.7) 130.0 (22.1)b 3.78 .027

Sensation Seeking Scale
Boredom 2.9 (2.1) 2.8 (1.9) 3.8 (2.2) 1.80 .173
Disinhibition 4.1 (2.1)a 5.7 (1.9)b 5.5 (2.6)b 5.01 .009
Experience
Seeking

4.9 (2.1)a 6.1 (1.7)b 6.3 (2.4)b 3.56 .033

Adventure
Seeking

5.8 (2.9) 6.2 (2.7) 7.0 (2.9) 1.09 .341

Total Score 17.8 (5.6)a 20.8 (5.6)b 22.6 (7.3)b 4.32 .017

Delay discounting
(ln(k))

#4.7 (1.9) #4.1 (1.5) #3.8 (1.5) 2.33 .104

Note. Values represent Mean(Standard Deviation). Superscript letters represent post
hoc analysis, with differing letters indicating significant group differences
(p’s < .05). Degrees of freedom for delay discounting were 2,78.

Fig. 2. Self-report measure of conscientiousness (scale range: 0–48) from the NEO
Five Factor Inventory across groups. Error bars represent ±1 SEM. The following
symbols represent significance: *p < .05, **p < .01.

Fig. 3. Self-report measures of impulsivity from the Barratt Impulsiveness Scale
(subscale range: 11–44) and the Sensation Seeking Scale (subscale range: 0–10)
across groups. Error bars represent ±1 SEM. The following symbols represent
significance: *p < .05, **p < .01.
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smokers are consistent with past findings of reduced EEG power
during nicotine withdrawal, and may explain electrophysiological
differences when compared to non-smokers. Without comparison
to states of acute nicotine administration or abstinence, it is diffi-
cult to judge whether decreases in power reflect an early with-
drawal state, premorbid differences in neural response, or neural
changes due to chronic nicotine use. In order to avoid comparing
an acute withdrawal (daily smokers) to groups who do not experi-
ence withdrawal (nondaily smokers) or do not smoke,
non-deprived daily dependent smokers were compared to nonda-
ily smokers and non-smokers. Acute nicotine effects were not pre-
sent in nondaily smokers, who showed a non-significant trend of
lower alpha (eyes closed) response than non-smokers that may
be independent of nicotine state. Future studies testing daily and
nondaily smokers at peak and trough nicotine states using a
within-subjects design are needed to resolve nicotine effects on
resting EEG in dependent and non-dependent individuals.
Comparing effects of nicotine administration on smokers and
non-smokers during EEG recording would demonstrate differential
magnitude of change in alpha power between groups.

Daily smokers showed less delta and theta power during the
eyes open condition and a trend for lower alpha power than

nondaily smokers. Exploratory correlation analyses suggested that
the electrophysiological responses were sensitive to smoking vari-
ables, with higher use/dependence correlating with lower EEG
power. However, this association did not hold when a correction
factor was applied. The differences between daily and nondaily
smokers suggest a potential dose–response effect that merits fur-
ther investigation. Including light and heavy daily smokers in the
sample and recording smoking pack-years would control for effects
of smoking duration across varying smoking rates and may eluci-
date the role of smoking rate and duration on resting EEG response.
Adding a measure of evoked EEG response may provide an addi-
tional evaluation of neural synchrony capacity in daily and nonda-
ily smokers. Crawford et al. (2002) measured auditory evoked
synchrony and found enhanced gamma (40 Hz) response during
both abstinent and peak nicotine states in chronic, heavy smokers
compared to never-smokers. Crawford et al. (2002) attributed
group differences to acute nicotine effects and chronic inhibition
of monoamine oxidase on dopamine neurotransmission and
gamma synchrony. Impaired gamma synchrony has been found
in clinical populations with abnormalities in GABA and glutamate
neurotransmission (e.g., Uhlhaas and Singer, 2006). Resting and
evoked EEG measures may be sensitive to different smoking rates
and states.

Self-report measures of sensation seeking and personality dis-
tinguished non-smokers from both daily and nondaily smokers.
Non-smokers scored lower on disinhibition and experience seeking
than both smoking groups, consistent with studies showing that
sensation seeking is associated with increased drug abuse vulner-
ability and can differentiate smokers and non-smokers (Kelly
et al., 2006; Perkins et al., 2008; Spillane et al., 2010). Lower con-
scientiousness in daily and nondaily smokers is consistent with
research identifying low conscientiousness as a risk factor for
smoking initiation and maintenance and high conscientiousness
as a protective factor against smoking (Kashdan et al., 2005; Von
Ah et al., 2005; Conner et al., 2009). Conscientiousness has been
associated with better behavioral control, healthy coping strate-
gies, and greater feelings of personal control (Terracciano and
Costa, 2004; Kashdan et al., 2005; Terracciano et al., 2008;
Conner et al., 2009). These results support that increased sensation
seeking and low conscientiousness may be a risk for smoking
behavior. In contrast, measures of impulsiveness differentiated
non-smokers and nondaily smokers from daily smokers.
Specifically, daily smokers reported greater motor impulsivity than
the other groups. Motor impulsivity has been associated with more
habit-driven rather than goal-directed behavior, and associated
with risk-taking and impaired working memory and executive
function (Hogarth et al., 2012). Motor impulsiveness may reflect
greater dependence and potentiate continued smoking behavior.
Additionally, delay discounting showed that smokers made more
impulsive choices than non-smokers, but daily and nondaily smok-
ers discounted delayed rewards at a similar rate.

As expected, nondaily smokers scored lower on all measures of
smoking history and behavior, including smoking duration, mea-
sures of dependence (FTCD, NDSS, WISDM), and respiratory CO
levels, and they started smoking at an older age. A greater increase
in craving by daily smokers than nondaily smokers may represent
a response to cues and expectations rather than abstinence time
(Dar et al., 2005, 2010; Tiffany et al., 2009). One interesting result
was from a self-report measure included to reflect experiencing
decreased reward from natural reinforcers as a consequence of
drug use and dependence. The Physical Anhedonia Scale (PAS) is
a self-report measure assessing the ability to experience pleasure
from typically rewarding physical stimuli, such as food, sex, and
environment (Chapman LJ, Chapman JP. Revised physical anhedo-
nia scale. Unpublished test. 1978). The PAS differs from past mea-
sures of anhedonia used in smoking research because it separates

Fig. 4. Self-report measures of the physical anhedonia across groups (scale range:
0–61). Error bars represent ±1 SEM. The following symbols represent significance:
*p < .05, **p < .01.

Fig. 5. Mean subjective values for non-smokers, nondaily smokers, and daily
smokers of an $800 reward plotted as a function of time from the choice until the
receipt of the reward. Trend lines show the best-fitting logarithmic function
through the mean subjective values for the groups.
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sensory pleasure from social experiences and personal interests
captured by broader scales of hedonic capacity (e.g., Snaith–
Hamilton Pleasure Scale). Based on previous studies associating
increased anhedonia with smoking onset, escalation, persistence
of dependence, and poor cessation outcomes, we expected depen-
dent, daily smokers to show greatest anhedonia (higher scores)
(Leventhal et al., 2009; Audrain-McGovern et al., 2012). Smokers
and non-smokers did not differ, which may indicate that the mea-
sure is not sensitive to smoking behavior. However, findings of
lower anhedonia in nondaily smokers compared to non-smokers
suggest that nondaily smokers may have a heightened capacity
for sensory experiences. Low PAS scores suggest that nondaily
smokers may retain reinforcement from natural reward and expe-
rience positive physical stimulation beyond the norm. Intermittent
smoking may promote continued smoking due reduced develop-
ment of tolerance to pleasurable sensory effects. Alternatively,
nondaily smokers may be more prone to sensory satiation or satu-
ration following one or fewer cigarettes or reduced adaption to
aversive consequences of inhaling heat or smoke (e.g., throat irrita-
tion, nausea). Future studies could include questions targeting
physical sensations of smoking, such as taste or throat hit.
Smoking cessation treatment studies may consider a potential role
for sensory substitution during initial intervention.

Study results must be considered within the context of an
observational study. The study design does not allow for differen-
tiation between possible premorbid conditions, such as
smoking-related changes in neuronal structure and function and
low neuronal excitability, that may drive smoking behavior and
dependence. The sample consisted of young, relatively light smok-
ers, leaving out older longer-term heavy smokers and
non-dependent daily smokers. Younger smokers might be more
resilient and have fewer nicotine-related changes due to having
less experience with nicotine, resulting in smaller effect sizes and
lack of significant group differences for other frequency bands.
Measuring resting EEG in adolescents or adults during smoking ini-
tiation may reveal risk factors for future transition to daily, depen-
dent smoking. Additionally, strict criteria excluding participants
with comorbid psychiatric disorders, which commonly occur in
smokers, controlled non-nicotine contributions to EEG response.
This design reduced the potential for contamination to the EEG
effect by the usual comorbidities found in smokers, while also
reducing generalization to the typical smoker population. A larger
sample size and greater variability in smoking history, comorbid
diagnoses, gender, and ethnicity would increase statistical power
to the address these factors.

In conclusion, resting EEG may be a useful marker of risk for
nicotine dependence and use severity as well as for evaluating
relapse risk and treatment efficacy (e.g., nicotine replacement ther-
apies and smoking cessation pharmacotherapies) in chronic smok-
ers. Vulnerability for initiation and maintenance for smoking
behavior may be predicted by measures of impulsiveness and con-
scientiousness, but these personality measures do not seem to
have a major influence on resting EEG. More research is needed
to evaluate the role of physical (sensory) anhedonia in smoking
behavior and its potential utility in smoking cessation treatment.
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