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a b s t r a c t

The Balloon Analogue Risk Task (BART) is a popular task used to measure risk-taking behavior. To
identify cognitive processes associated with choice behavior on the BART, a few computational models
have been proposed. However, the extant models either fail to capture choice patterns on the BART
or show poor parameter recovery performance. Here, we propose a novel computational model, the
exponential-weight mean–variance (EWMV) model, which addresses the limitations of existing models.
By using multiple model comparison methods, including post hoc model fits criterion and parameter
recovery, we showed that the EWMV model outperforms the existing models. In addition, we applied
the EWMV model to BART data from healthy controls and substance-using populations (patients with
past opiate and stimulant dependence). The results suggest that (1) the EWMV model addresses the
limitations of existing models and (2) heroin-dependent individuals show reduced risk preference than
other groups, which may have significant clinical implications.

© 2021 Elsevier Inc. All rights reserved.
1. Introduction

Computational modeling of cognitive tasks has been widely
sed to address the limitations of behavioral measures, with
hich it is often hard to identify underlying cognitive processes
Ahn et al., 2014; Daw, Gershman, Seymour, Dayan, & Dolan,
011; Ratcliff, 1978). For example, research examining a series
f models for the Iowa Gambling Task (IGT) has accounted for
he various patterns in behavioral data, provided short- and long-
erm prediction and good parameter recovery (Ahn, Busemeyer,
agenmakers, & Stout, 2008; Ahn et al., 2014; Busemeyer &

tout, 2002; Haines, Vassileva, & Ahn, 2018; Worthy & Maddox,
014), and revealed decision-making deficits in several clinical
opulations that were not detected by traditional performance
ndices (see Ahn, Dai, Vassileva, Busemeyer, & Stout, 2016, for a
eview).

Like the IGT, the Balloon Analogue Risk Task (BART; Lejuez
t al., 2002) was originally designed for the clinical purpose of
easuring risk-taking tendencies and the identification of indi-
iduals who are prone to take risks (Lejuez et al., 2002; Lejuez,
immons, Aklin, Daughters, & Dvir, 2004), but its scope has ex-
anded to other areas of psychology and cognitive science (van
avenzwaaij, Dutilh, & Wagenmakers, 2011; Wallsten, Pleskac, &
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niversity, Seoul, 08826, Republic of Korea.

E-mail address: wahn55@snu.ac.kr (W.-Y. Ahn).
ttps://doi.org/10.1016/j.jmp.2021.102532
022-2496/© 2021 Elsevier Inc. All rights reserved.
Lejuez, 2005). The BART has been shown to identify high risk-
taking individuals (Aklin, Lejuez, Zvolensky, Kahler, & Gwadz,
2005; Lejuez et al., 2002, 2004) although several previous findings
suggested low correlations between the BART performance and
risky behavior (Frey, Pedroni, Mata, Rieskamp, & Hertwig, 2017;
Hopko et al., 2006). Specifically, the behavioral performance of
the BART is significantly correlated with self-report measures of
risk-related constructs such as impulsivity and sensation-seeking
(Lejuez et al., 2002), and past real-world risky behaviors such as
drug use and risky sex (Lejuez et al., 2004). These results pre-
sumably reflect at least two features of the BART which make the
task similar to real-world situations: First, each trial of the BART
includes sequential risk-taking choices and terminates when the
participant does not want to take the risk any more or encounters
a certain condition that makes it impossible to proceed. Second,
the riskiness of the risk-taking choices within a trial increases
each time the participant makes a risky choice. Specifically, as
the participant makes a risky choice, the loss amount gradually
increases, whereas the reward amount remains constant or even
decreases. Many actual risky behaviors involve these features.
For example, patients with substance use disorders continue to
take the drug even in the face of negative consequences until
they are satisfied with it or cannot obtain the drug because
of external factors such as lack of availability and insufficient
money. Also, patients often start with smaller amounts of the
drug but gradually increase their dosage as their tolerance in-
creases. As their tolerance increases, they must (and are likely

https://doi.org/10.1016/j.jmp.2021.102532
http://www.elsevier.com/locate/jmp
http://www.elsevier.com/locate/jmp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmp.2021.102532&domain=pdf
mailto:wahn55@snu.ac.kr
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o) take more risks to get the same amount of reward. The BART
as the distinct advantage of effectively illustrating this kind of
eal-world situation in a laboratory setting.

To quantitatively analyze the underlying cognitive processes
n the BART, previous studies have proposed two computational
odels: a four-parameter model (Wallsten et al., 2005) and a

wo-parameter model (Pleskac, 2008; van Ravenzwaaij et al.,
011). The four-parameter model was proposed as a winning
odel by comparing several computational models. The param-
ters of the four-parameter model have been shown to correlate
ith the frequencies of past real-world risky behaviors such as
ubstance use, unprotected sex, and stealing (Wallsten et al.,
005). However, two parameters related to the learning process
f the four-parameter model showed poorer parameter recov-
ry and were systematically overestimated (Heathcote, Brown, &
agenmakers, 2015; van Ravenzwaaij et al., 2011). Since good
arameter recovery performance is crucial for interpreting results
ased on the model parameters (van Ravenzwaaij & Oberauer,
009; Wagenmakers, Van Der Maas, & Grasman, 2007), poor
arameter recovery performance is a critical limitation of the
our-parameter model.

The two-parameter model was proposed to overcome this lim-
tation of the four-parameter model (Pleskac, 2008; van Raven-
waaij et al., 2011). To develop a model that shows good pa-
ameter recovery, the authors simplified the original model by
emoving parameters that do not exhibit good recovery. The two-
arameter model is nested within the four-parameter model, and
s a result of simplification, it succeeded in recovering accurate
arameter values (van Ravenzwaaij et al., 2011). However, the
wo-parameter model also has a critical limitation; it is based
n a strict assumption that participants do not learn during the
ART. The assumption is unrealistic unless the researcher tells the
articipant the actual exploding probability of virtual balloons be-
ore starting the experiment. Consistently, Pleskac (2008) showed
hat the two-parameter model provided a better fit than the four-
arameter model when the probability structure was explicitly
nformed, but a poorer fit than the four-parameter model when
he probability structure was uninformed.

Furthermore, because this issue is related to the task design,
he two-parameter model may not fit the original task design.
he original task design has the advantage that it similarly illus-
rates real-world situations, which means if we modify the task
esign to apply the two-parameter model, we lose the advantage.
hus, there is a need to build a new model, which shows good
arameter recovery and fits the original task design.
Here, we propose a novel BART model, which shows good

arameter recovery, fits the original task design, and provides
n intuitive interpretation of the learning process. First, we in-
roduce the existing model (the four-parameter model). We also
onsider a non-learning version of the four-parameter model to
est the assumption that participants do not learn during the
ART is unrealistic. Then, we reparameterize the four-parameter
odel to improve its parameter recovery. By modifying equations

rom the reparametrized version of the four-parameter model, we
evelop candidate models. Finally, we select the best model based
n the leave-one-out information criterion (LOOIC) and the pa-
ameter recovery. To examine the implication of the new model,
e compared the parameters with similar psychological con-
tructs of competing models and applied the new model to BART
ata from patients with past opiate and stimulant dependence.

. Method

.1. Participants

The initial sample included 593 individuals who had en-
olled for a study of impulsivity in opiate and stimulant users
2

in Sofia, Bulgaria. Then, only those who meet the following
criteria were included: age between 18 and 50 years, more
than 8 years of formal education, estimated IQ of 80 or above,
no history of head injury or loss of consciousness for more
than 30 min, no history of neurological illness or psychotic
disorders, HIV-seronegative status, and not currently on opioid
maintenance therapy. All participants had a negative breathalyzer
test for alcohol and negative rapid urine toxicology screen for
opiates, cannabis, amphetamines, methamphetamines, benzodi-
azepines, barbiturates, cocaine, MDMA, and methadone. We clas-
sified the included participants into three groups: healthy con-
trols, heroin-dependent, and amphetamine-dependent groups.
After that, group-specific criteria were applied to make each
group include primarily mono-dependent (‘pure’) users. For the
healthy control group, participants with any substance depen-
dence or abuse symptom based on DSM-IV criteria were excluded
(except for nicotine, caffeine, and past cannabis dependence).
For the heroin and the amphetamine-dependent groups, mono-
substance-dependent participants who met DSM-IV lifetime cri-
teria for opiate or stimulant dependence with no dependence
on any other substances were included. Finally, a total of 226
subjects (135 healthy controls, 47 heroin-dependent, and 44
amphetamine-dependent individuals) were included in the anal-
ysis. For more details about the recruitment and screening proce-
dures, see Ahn and Vassileva (2016). This study was approved by
the Institutional Review Boards of the Virginia Commonwealth
University and the Medical University in Sofia. All participants
provided informed consent. See supplementary material for de-
mographic and clinical characteristics of the participants (Table
S1).

2.2. Task

In the BART, a virtual balloon is presented to the partici-
pant on each trial. Participants need to decide whether to pump
the balloon to accumulate some predefined amount of reward
(i.e., pump), or transfer and receive the reward that has been
accumulated so far (i.e., transfer). Each trial ends when the partic-
ipant chooses to transfer the accumulated reward or the balloon
explodes. If the balloon explodes, the participant loses all the
accumulated reward on that trial. We randomly determined ex-
plosion points for each trial; thus, each participant performed
the task with a different set of explosion points. Participants
are not informed about the probability of the balloon exploding.
Typically, the degree of risk-taking on the BART is measured
by the adjusted BART score, which is the average number of
pumps for unexploded balloons (Lejuez et al., 2002). The adjusted
BART score is preferable because it is not directly affected by
the explosion probability. To examine group differences in the
adjusted BART score between the three groups, we conducted
the Bayesian t-test using the R package BEST (Kruschke, 2013;
Meredith & Kruschke, 2018).

2.3. Models

2.3.1. The four-parameter model
The four-parameter model (Wallsten et al., 2005) is based on

two assumptions. First, the participants update the belief about
the probability of the balloon exploding after each trial. Second,
the participants decide the optimal number of pumps before each
trial.

From a computational modeling perspective, the first assump-
tion means that pburstk , the participant’s perceived probability that
pumping the balloon on trial k will make the balloon explode, is
constant during the trial k. The participant initially has a prior
belief about the probability of the balloon exploding and updates
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he prior belief based on observation on each trial. The updating
rocess is described as follows:

burst
k = 1 −

α +
∑k−1

i=0 nsuccess
i

µ+
∑k−1

i=0 npumps
i

with 0 < α < µ. (1)

In Eq. (1), the initial value of pburstk is 1 − α/µ, which reflects
he participant’s initial belief that pumping will make the balloon
xplode. The magnitudes of α and µ indicate the degree of
earning from observations; high values indicate that the prior
elief is strong and the perceived probability is affected to just
small degree by the observed data.

∑k−1
i=0 nsuccess

i is the sum of
he number of successful pumps up to trial k−1, and

∑k−1
i=0 npumps

i
s the sum of the total number of pumps up to trial k − 1.

The second assumption that the participant evaluates the op-
imal number of pumps before each trial is reflected in the
quations for calculating the probability that the participant will
ump the balloon. Adopting the prospect theory (Kahneman &
versky, 2013), the expected utility after l pumps on trial k, Ukl,
s given by:

kl =
(
1 − pburstk

)l
(lr)γ . (2)

In Eq. (2), r is the amount of reward per successful pump, and
is risk-taking propensity. We can calculate the optimal number
f pumps by setting the first derivative of Eq. (2) for l equals zero.
hen, we can easily derive the optimal number of pumps on trial
, νk, as follows:

k =
−γ

ln(1 − pburstk )
with γ ≥ 0. (3)

Based on νk, we can calculate the probability that the par-
ticipant will pump the balloon on trial k for pump l, ppump

kl :

pump
kl =

1
1 + eτ(l−νk)

with τ ≥ 0. (4)

In this logistic equation, τ is the inverse temperature param-
eter. The inverse temperature of the choice rule determines how
deterministic or random the choice is; The higher τ , the more
deterministic. If l < νk, p

pump
kl becomes greater than 0.5. Similarly,

if l > νk, p
pump
kl becomes less than 0.5. In sum, the four-parameter

model has four parameters to be estimated: α,µ, γ , and τ .
We can calculate the likelihood of the data given the parame-

ters by multiplying the probability that the participant will pump
on trial k for pump l, ppump

kl . The probability of the data given the
parameters, p(D|α,µ, γ , τ ), is given by:

p (D|α,µ, γ , τ ) =

klast∏
k=1

llastk∏
l=1

ppump
kl

(
1 − ppump

k,llastk +1

)dk
, (5)

where klast is the last number of trials, llastk is the last number of
umping opportunities on trial k. if the participant transfers the

accumulated reward on trial k to the virtual bank account, dk = 1
and if the balloon explodes on trial k, dk = 0.

Although previous researchers have primarily used the four-
parameter model, it has been known that α and µ of the four-
parameter model are not well recovered. The two-parameter
model was proposed to address this problem of the four-
parameter model (Pleskac, 2008; van Ravenzwaaij et al., 2011).
However, the two-parameter model does not apply to the original
BART paradigm because participants are not informed of the
probability structure of the task. Therefore, instead of the two-
parameter model, we considered a non-learning version of the
four-parameter model, which is based on an assumption that
participants do not learn during the BART.
3

2.3.2. Non-learning version (Par3 model)
The non-learning version of the four-parameter model is based

on the following assumption of the two-parameter model: par-
ticipants do not learn during the BART. Since participants do not
update their belief of the probability of the balloon exploding
based on observations and they are not informed of the prob-
ability structure of the original BART paradigm, in this model,
we assumed participant’s belief of the probability of the balloon
exploding as a parameter, θ . Then, similar to Eq. (3), we can derive
the optimal number of pumps, ν, as follows:

ν =
−γ

ln(1 − θ )
with γ ≥ 0. (6)

Based on the optimal number of pumps, similar to Eq. (4), we
can calculate the probability that the participant will pump the
balloon for pump l, ppump

l :

ppump
l =

1
1 + eτ(l−ν)

with τ ≥ 0. (7)

Notably, the optimal number of pumps, ν, and the probability
that the participant will pump the balloon for pump l, ppump

l ,
do not depend on the trial number because the participant’s
belief of the probability of the balloon exploding is a parameter
with a fixed value. In sum, the non-learning version of the four-
parameter model includes three free parameters to be estimated:
θ , γ , and τ .

2.3.3. Reparametrized version (Par4 model)
We suspected that the strong association between α and µ

(the ratio reflects the participant’s initial belief and the mag-
nitudes indicate the degree of learning from observations) may
be problematic and tested if reparametrizing α and µ would
improve the parameter recovery performance of the model.

The parameters α and µ are associated with two processes.
The ratio of α to µ, α/µ, refers to the participant’s initial belief
that pumping will make the balloon explode, and the magnitudes
of both α and µ determine the degree of learning from obser-
ations. Thus, we wanted to reparameterize them so that each
arameter is uniquely associated with just one process. Also, we
anted to remove the constraint that α is less than µ because

the constraint might lead to inefficient sampling for Bayesian
parameter estimation (see Section 2.4).

For the goal, we reparametrized α and µ into φ and η: φ =

/µ and η = 1/µ. Substituting these parameters into Eq. (1)
ields:

burst
k = 1 −

φ + η
∑k−1

i=0 nsuccess
i

1 + η
∑k−1

i=0 npumps
i

with 0 < φ < 1, η > 0. (8)

After the reparameterization, the initial value of pburstk equals
1−φ. Thus, φ indicates the participant’s initial belief that pump-
ing will not make the balloon explode. Also, η is an updating
coefficient of the participant’s belief by the observed data. If η =

0, pburstk is not affected by the observed data. If η is very large,
pburstk rapidly comes close to the observed probability of burst.
Eqs. (3) and (4) remain the same. Note that we included the
reparametrized four-parameter version in the hBayesDM package
as a function named bart_par4 (Ahn, Haines, & Zhang, 2017).

2.3.4. The exponential-weight model (EW model)
The four-parameter model has two critical limitations, even

after the reparameterization. First, although the model reflects
that the participant updates pburstk from the prior belief with the
observed data, Eq. (8) hardly provides an intuitive interpretation
of the learning process. We modified the updating equation in an
attempt to show the learning process more clearly. Second, the
assumption that the participant determines the optimal number
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f pumps before each trial may be unjustified. This assumption
ight be contradictory with the primary goal of the BART, mea-
uring the risk-taking tendency of individuals, because it does not
eflect some critical features of risk-taking such as loss aversion
nd impulsive responses. Instead, the participant may decide
hether to pump the balloon or not just before each pump.
To address the first issue, we defined a parameter, ψ = 1−φ,

hich is the initial value of pburstk . Substituting this parameter
into Eq. (8) yields:

pburstk = ωk−1ψ + (1 − ωk−1)Pk−1with 0 < ψ < 1, η > 0, (9)

where Pk−1 =

∑k−1
i=0 (npumps

i −nsuccessi )∑k−1
i=0 npumps

i
, which is the observed prob-

bility that pumping has made the balloon explode up to trial
− 1, and ωk−1 =

1
1+η

∑k−1
i=0 npumps

i
, which is the weight indicating

how much weight is given to the prior belief on trial k when
estimating the probability of the balloon exploding. Each compo-
nent of Eq. (9) has a clear role, which is interpretable as a part of
weight updating learning. Specifically, the current value (pburstk ) is
estimated as a weighted average of the initial value (ψ) and the
observed value (Pk−1). As data accumulates, the participant up-
dates the weight (ωk−1) and the observed value (Pk−1). The weight
(ωk−1) and the observed value (Pk−1) are determined by the total
number of the data (

∑k−1
i=0 npumps

i ) and the number of the data that
meet a certain condition (explosion,

∑k−1
i=0 (n

pumps
i −nsuccess

i )). In this
framework, η indicates how rapidly the participant depends on
experience. If η → ∞, learning entirely depends on the present
outcome. If η = 0, no further learning occurs.

To improve the model performance within this framework, we
modified the functional form of the weight, ωk−1. If we define x
as η

∑k−1
i=0 npumps

i , in Eq. (9), ωk−1 =
1

1+x , which means the weight
is hyperbolic. Other functional forms can be alternatives to the
hyperbolic function if they meet two conditions: the participant’s
learning starts with the prior belief (if x = 0, ωk−1 = 1) and
rimarily depends on the observed value after observing enough
ata (if x → ∞, ωk−1 → 0). The exponential decay, e−x, is a
easonable alternative because it meets the two conditions and
s commonly used to describe natural phenomena such as the
oltage of the resistor–capacitor circuit, the number of remain ra-
ioactive atoms, and the concentration of the first-order chemical
eaction. Replacing ωk−1 with e−x in Eq. (9) yields:

pburstk = e−ξ
∑k−1

i=0 npumps
i ψ + (1 − e−ξ

∑k−1
i=0 npumps

i )Pk−1

with 0 < ψ < 1, ξ > 0.
(10)

To avoid confusion, we replaced η with ξ and named ξ an updat-
ing exponent.

For the second issue (the assumption that the participant
determines the optimal number of pumps before each trial), we
tested a new model which assumed that the participant decides
whether to pump the balloon or not before each pump instead
of each trial. Using the prospect theory (Kahneman & Tversky,
2013), we calculated the subjective utilities for pumping and
not-pumping a balloon on trial k for pump l as follows:

Upump
kl =

(
1 − pburstk

)
rρ − pburstk λ {(l − 1) r}ρ

with 0 < ρ < 2, λ > 0, (11)
transfer
kl = 0, (12)

here r is the amount of reward for each successful pump, ρ is
risk preference, and λ is loss aversion. Then, we can calculate the
probability that the participant will pump the balloon on trial k
for pump l, ppump

kl , by using these subjective utilities.

ppump
kl =

1
τ

(
U transfer

−Upump
)with τ ≥ 0, (13)
1 + e kl kl

4

where τ is inverse temperature. We noticed that this model
(Eqs. (11), (12), and (13)) is similar to a model (Model1) reported
in Wallsten et al. (2005). Although Model1 was not the best-
fitting model, its model fit was close to that of the winning model
(the four-parameter model). Considering that the EW model has
a single parameter for risk preference instead of having separate
risk preference parameters for gain and loss like Model1, we
also included Model1 in the model comparison to examine its
performance compared to other models. In summary, the EW
model has five free parameters to be estimated: ψ (prior belief
of burst), ξ (updating exponent), ρ (risk preference), τ (inverse
temperature), and λ (loss aversion).

2.3.5. Model1
In Model1 (Wallsten et al., 2005), the equation calculating the

probability of the balloon exploding is the same as the four-
parameter model (Eq. (1)). Because of the inefficient sampling
issue, we utilized the reparametrized version (Eq. (4)) instead
of Eq. (1).

Like the EWmodel, Model1 is based on an assumption that the
participant decides whether to pump the balloon or not before
each pump based on the subjective utilities for pumping and not-
pumping. The only difference is that Model1 has separate risk
preference parameters for gain and loss. The subjective utilities
for pumping and not-pumping a balloon on trial k for pump l are
calculated as follows:

Upump
kl =

(
1 − pburstk

)
rρ

+

− pburstk λ {(l − 1) r}ρ
−

with 0 < ρ+, ρ− < 2, λ > 0,
(14)

U transfer
kl = 0, (15)

where r is the amount of reward for each successful pump, ρ+

is risk preference for gain, ρ− is risk preference for loss, and λ is
loss aversion. Then, we can calculate the probability that the par-
ticipant will pump the balloon by using these subjective utilities
(Eq. (13)). In summary, Model1 includes six free parameters to be
estimated: φ (prior belief of success), η (updating coefficient), ρ+

(risk preference for gain), ρ− (risk preference for loss), τ (inverse
temperature), and λ (loss aversion).

2.3.6. The Exponential-Weight Mean–Variance model (EWMVmodel)
The existing models and EW model utilize the prospect theory

(Kahneman & Tversky, 2013) to calculate subjective utilities for
pumping and not-pumping. Given that previous studies have
suggested that the performances of the prospect theory and the
mean–variance analysis (Markowitz, 1952) are comparable (Boor-
man & Sallet, 2009; Hens & Mayer, 2014; Levy & Levy, 2004),
we tested a model by applying the mean–variance analysis to
the EW model. According to the mean–variance analysis, the
subjective utility of an option can be formulated by a linear
combination of the expected value and the variance of potential
outcomes. Applying the mean–variance analysis, we calculated
the subjective utilities for pumping and not-pumping a balloon
on trial k for pump l as follows:

Upump
kl =

(
1 − pburstk

)
r − pburstk λ(l − 1)r

+ ρpburst
(
1 − pburst

)
{r + λ(l − 1)r}2with λ > 0,

(16)

k k



H. Park, J. Yang, J. Vassileva et al. Journal of Mathematical Psychology 102 (2021) 102532

U

w

p
o
o
o
m
(
a

2

e
2
v
o
m
t
u
t
m
i
f
v
m
l
2

t
p
s
w
e
u
e
t
s
s
o
t
W
2
v
c
s
a
b
a
w
r
T
u
s
S

2

2

o
m
f
t
I
e
1
W
L
l
m
(
a
m

2

a
d
2
F
t
E
c
u
a
h
v
w
v
o
d
e
p
s
a
w

3

3

3

t
l
f
c
t
p
(
m
E
t
m
s
P
(
o
a

transfer
kl = 0, (17)

here r is the amount of reward for each successful pump,
ρ is risk preference, and λ is loss aversion. In Eq. (16), the
first two terms indicate the expected value of a pump, and the
last term indicates the impact of the variance of potential out-
comes on the subjective utility. Notably, in the mean–variance
framework, the risk preference is defined as a coefficient of the
variance term, which is a proxy for risk. If ρ < 0, the participant
prefers to choose an option with a large variance of potential
outcomes. If ρ = 0, the expected value of an option determines
the participant’s subjective utility. If ρ > 0, the participant
refers to choose an option with a small variance of potential
utcomes. Like the EW model, we can calculate the probability
f pumping the balloon by using these subjective utilities based
n the mean–variance analysis (Eq. (13)). In summary, the EWMV
odel includes five free parameters: ψ (prior belief of burst), ξ

updating exponent), ρ (risk preference), τ (inverse temperature),
nd λ (loss aversion).

.4. Hierarchical Bayesian analysis (HBA)

We used hierarchical Bayesian Analysis (HBA) for parameter
stimation (Berger, 2013, 2013; Gelman, Carlin, Stern, & Rubin,
004; Lee, 2011, 2011). HBA offers several benefits over con-
entional non-hierarchical approaches such as individual-level
rdinary least squares and maximum likelihood estimation (MLE)
ethods. First, HBA estimates parameters as posterior distribu-

ions instead of point estimates. Posterior distributions provide
s with more information about the parameters than point es-
imates because distributions show the uncertainty of the esti-
ated values. Second, with HBA, we can systematically character-

ze similarities and differences across subjects within a Bayesian
ramework based on the amount of information from each indi-
idual. Previous studies suggest that HBA allows us to estimate
odel parameters more accurately than individual- or group-

evel MLE methods (Ahn, Krawitz, Kim, Busemeyer, & Brown,
011).
We conducted HBA by using Stan (version 2.15.1), a probabilis-

ic programming language for specifying statistical models (Car-
enter et al., 2017). Stan uses Hamiltonian Monte Carlo (HMC) for
ampling from high-dimensional parameter space. Specifically,
e implemented the models in the hBayesDM (Ahn et al., 2017)
nvironment, which uses Stan. For parameter estimation, we
sed flat or weakly informative priors (Ahn et al., 2017; Haines
t al., 2018) to minimize the influence of the priors and the Matt
rick (Papaspiliopoulos, Roberts, & Sköld, 2007) to facilitate the
ampling process. We will make the Stan codes and precise prior
ettings publicly available through GitHub. We tested several
ther types of priors and confirmed that the priors hardly affected
he results as long as the priors are approximately uninformative.
e used a large enough sample size (4000 samples, including
000 burn-in samples per chain) to assure that parameters con-
erge to the target distributions, with four independent chains to
heck that the posterior distributions are not dependent on initial
tarting points. Note that Vehtari, Gelman, Simpson, Carpenter,
nd Bürkner (2019) recommended running at least four chains
y default. The trace plots indicated that chains were well mixed
nd the R̂ values (Gelman & Rubin, 1992) for all model parameters
ere lower than 1.1, which indicates that the estimated pa-
ameter values converged to their target posterior distributions.
hinning was not applied because thinning of chains is rarely
seful for the precision of estimates (Link & Eaton, 2012). See
upplementary material for detailed information of HBA (Table
2, Figs. S3, and S4).
5

.5. Model comparison

.5.1. Leave-one-out information criterion (LOOIC)
LOOIC is an information criterion calculated from the Leave-

ne-out cross-validation. Leave-one-out cross-validation is a
ethod to estimate out-of-sample prediction accuracy from a

itted Bayesian model based on the log-likelihood evaluated from
he posterior distributions (Vehtari, Gelman, & Gabry, 2017).
t is well-known that LOOIC has various benefits over simpler
stimates such as Akaike Information Criterion (AIC; Akaike,
998) and Bayesian Information Criterion (BIC; Schwarz, 1978).
e used the R package loo (Vehtari et al., 2017) to estimate

OOIC for each model. Because LOOIC is calculated from the log-
ikelihood, the lower LOOIC is, the better its model fit is. For
odel selection, LOOIC weights are defined as Akaike weights

Wagenmakers & Farrell, 2004) calculated based on LOOIC values,
nd the detailed information is provided in the supplementary
aterial (see Model comparison section).

.5.2. Parameter recovery
We also used parameter recovery to evaluate how accurate
model estimates true parameter values from the simulation
ata generated from the true parameter values (e.g., Ahn et al.,
011, 2014; Haines et al., 2018; Wagenmakers et al., 2007).
or the comparison, we did parameter recovery analysis for
he reparametrized version of the four-parameter model, the
W model, and the EWMV model. For each parameter in each
ompeting model, we randomly sampled true parameter val-
es from the truncated normal distribution with a mean and
standard deviation estimated from data of healthy controls,
eroin-dependent, and amphetamine-dependent groups to in-
estigate a broader range of parameter values. For each group,
e calculated individual posterior means as individual parameter
alues for participants and used the mean and standard deviation
f the individual parameter values as the mean and standard
eviation for the truncated normal distribution. Then, we gen-
rated simulation data of 30 trials per subject by using the true
arameter values. Lastly, we estimated parameter values from the
imulation data. Correlations between the true parameter values
nd the predicted parameter values and regression coefficients
ere used to evaluate the model performance.

. Results

.1. Model comparison

.1.1. Leave-one-out information criterion (LOOIC)
Table 1 shows the LOOIC for five competing models. In all

hree groups, the EWMV model was the best-fitting model fol-
owed by the EW, Model1, Par4, and Par3 in the order of model
its. The Par4 model outperformed the Par3 model, which is
onsistent with the result of the previous study, showing that
he two-parameter model provided a poorer fit than the four-
arameter model when the probability structure was uninformed
Pleskac, 2008). LOOIC weights, the relative likelihoods of the
odels calculated based on LOOIC values, strongly favored the
WMV model as indicated by its LOOIC weights of 1. Considering
hat the Model1 includes one more parameter but shows poorer
odel fits than the EW model, we excluded the Model1 from
ubsequent analyses. Also, given that the LOOIC values for the
ar3 model were much larger than those of the other models
i.e., the Par3 model provided much poorer model fits than the
ther models), we decided to exclude the Par3 model from further
nalyses.
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Fig. 1. Parameter recovery results for the reparametrized version of the four-parameter model (Par4 model). The red lines denote y = x. The blue lines indicate
he regression lines of each graph. Shaded regions indicate 95% confidence intervals. The correlation and regression coefficients of each scatter plot is as follows
correlation, slope, intercept]. φ (prior belief of success): [0.605, 0.896, 0.102], η (updating coefficient): [0.702, 0.991, 0.003], γ (risk-taking propensity): [0.918, 0.903,
.079], τ (inverse temperature): [0.882, 0.878, 0.034]. The average of the correlation coefficients is 0.777. For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.
Fig. 2. Parameter recovery results for the exponential-weight model (EW model). The red lines denote y = x. The blue lines indicate the regression lines of each
raph. Shaded regions indicate 95% confidence intervals. The correlation and regression coefficients of each scatter plot are as follows [correlation, slope, intercept].
(prior belief of burst): [0.818, 0.757, 0.003], ξ (updating exponent): [0.764, 0.830, 0.005], ρ (risk preference): [0.666, 0.811, 0.138], τ (inverse temperature): [0.913,

.973, 0.522], λ (loss aversion): [0.694, 0.260, 3.350]. The average of the correlation coefficients is 0.771. For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.
p

Table 1
Leave-one-out information criterion for each model.
Group Model LOOIC ∆LOOIC LOOIC weights

HC

EWMV 20297.650 0 1.000
EW 20454.267 156.617 0.000
Model1 20488.310 190.660 0.000
Par4 20666.613 368.963 0.000
Par3 22482.830 2185.180 0.000

Her

EWMV 7055.653 0 1.000
EW 7080.670 25.017 0.000
Model1 7104.407 48.754 0.000
Par4 7182.598 126.945 0.000
Par3 7811.477 755.824 0.000

Amp

EWMV 6761.845 0 1.000
EW 6793.605 31.760 0.000
Model1 6805.140 43.295 0.000
Par4 6877.514 115.669 0.000
Par3 7264.684 502.839 0.000

EWMV: the exponential-weight mean–variance model EW: the exponential-
eight model, Model1: a model similar to the EW model from a previous
tudy (Wallsten et al., 2005), Par4: the reparametrized version of the four-
arameter model, Par3: the non-learning version of the four-parameter model,
C: healthy control group, Her: heroin-dependent group, Amp: amphetamine-
ependent group. Lower LOOIC indicates a better model fit. The LOOIC weight
s the relative likelihood of the model calculated based on its LOOIC.

.1.2. Parameter recovery
We evaluated the quality of parameter recovery as the correla-

ion between the true and estimated values. Also, we considered
he regression coefficients to characterize the degree of associ-
tions and biases. In the main text, we report the parameter
ecovery results from the healthy control group. The parameter
ecovery results from the heroin- and amphetamine-dependent
roups are reported in the supplementary material (Figs. S5–
10) and are not qualitatively different from the those from the
ealthy control group.
Fig. 1 shows the results of parameter recovery from the

ealthy control group for the Par4 model. As shown in Fig. 1,
 E

6

overall all parameters were relatively well recovered in the Par4
model including the prior belief of success (φ) and the updating
coefficient (η), which were not well recovered and systematically
overestimated in the previous studies (Heathcote et al., 2015; van
Ravenzwaaij et al., 2011). This suggests that our reparameteriza-
tion may have improved the parameter recovery performance by
separating the roles of the two parameters. To directly compare
the parameter recovery of the four-parameter model and the
Par4 model, we attempted to recover the parameters of the
four-parameter model, but the parameters of the original four-
parameter model failed to converge even after many (e.g., 4000)
burn-in samples. We suggest two possible reasons underlying the
failure. First, given that the magnitudes of α and µ commonly
indicate the degree of learning from observations, the high cor-
relation between the two parameters might make the sampling
process fail to work well even with HMC. Second, the constraint
that µ is always larger than α may cause issues in the sampling
process.

Fig. 2 shows the results of parameter recovery from the
healthy control group for the EW model. The EW model showed
poorer parameter recovery performance than the Par4 model in
two aspects. First, the risk preference (ρ, EW model) exhibited
relatively weak recovery compared to the risk-taking propensity
(γ , Par4 model). Second, for the loss aversion (λ, EW model),
the estimated values were shrunk towards the mean value. This
shrinkage effect indicates that the model parameter might not
be accurately estimated from the information the data con-
tain. Figs. S7 and S8 show that the loss-aversion (λ, EW model)
was also not recovered well from the heroin-dependent and
amphetamine-dependent groups, which is consistent with the
recovery results from the healthy control group.

Fig. 3 shows the results of parameter recovery from the
healthy control group for the EWMV model. Most parameters,
except for the risk preference (ρ, EWMV model), showed good
arameter recovery, including the loss aversion parameter (λ,

WMV model), which was not recovered well for the EW model.
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Fig. 3. Parameter recovery results for the exponential-weight mean–variance model (EWMV model). The red lines denote y = x. The blue lines indicate the regression
ines of each graph. Shaded regions indicate 95% confidence intervals. The correlation and regression coefficients of each scatter plot are as follows [correlation, slope,
ntercept]. ψ (prior belief of burst): [0.847, 0.810, 0.003], ξ (updating exponent): [0.798, 0.667, 0.005], ρ (risk preference): [0.746, 0.610, 0.000], τ (inverse temperature):
0.812, 0.870, 1.495], λ (loss aversion): [0.933, 0.860, 0.314]. The average of the correlation coefficients is 0.827. For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.
Fig. 4. Correlations between observed and simulated adjusted BART scores for the models. The red lines denote y = x. The blue lines indicate the regression lines of
ach graph. Shaded regions indicate 95% confidence intervals. The correlation coefficient of each scatter plot are as follows. Par4: 0.770, EW: 0.765, EWMV: 0.792.
or interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.
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or the risk preference (ρ, EWMV model), the regression line re-
veals that the estimated values were slightly shrunk towards the
mean value. Although the risk preference (ρ, EWMV model) was
ot recovered well, considering the EWMV model includes one
ore parameter than the Par4 model (i.e., the EWMV model is
ore complex than the Par4 model), we decided to scrutinize the
arameter recovery more to accurately compare the parameter
ecovery performances of the EWMV and Par4 models.

The parameter recovery results for the prior belief and up-
ating rate provide support for the EWMV model. For the Par4
odel, some parameter values of the prior belief of success (φ)

and the updating coefficient (η) deviated from the diagonal in all
three groups (Figs. 1, S5, and S6). Notably, the updating coefficient
(η) showed poor parameter recovery when we used the mean and
standard deviation estimated from the amphetamine-dependent
group (Fig. S6). In contrast, for the EWMV model, most parameter
values of the prior belief of burst (ψ) and the updating exponent
(ξ ) were well recovered (Figs. 3, S9, and S10). Considering the
LOOIC and parameter recovery results, we selected the EWMV
model as the winning model and compared it with the Par4
model in further analyses.

3.1.3. Posterior prediction
We evaluated the posterior prediction performance of each

model as a correlation between the observed and simulated ad-
justed BART scores. For the goal, we estimated parameters for
each model from the observed data and generated simulation
data by using the estimated parameters. Then, we calculated the
adjusted BART score from the simulation data and compared the
simulated score with the observed score for each participant.

Fig. 4 shows the correlations between observed and simulated
adjusted BART scores for the Par4, EW, and EWMV models. All
7

models showed good predictive performance, and their predictive
performances are comparable. The regression lines display that
the simulated values were slightly shrunk towards the mean
value.

3.2. Correlation analysis

To examine whether the EWMV model includes advantageous
features of the four-parameter model, we investigated correla-
tions between seemingly corresponding model parameters of the
Par4 model and the EWMVmodel: (γ , ρ), (φ, ψ), (η, ξ ), and (τ , τ );
the former one is the parameter of the Par4 model, and the latter
one is the parameter of the EWMVmodel. The risk-taking propen-
sity (γ ) and the risk preference (ρ) are related to the risk-taking
tendency. The prior belief of success (φ) and the prior belief of
burst (ψ) correspond to the participant’s prior belief about the
balloon. The updating coefficient (η) and the updating exponent
(ξ ) mean updating rate of observation. The two inverse temper-
tures (τ ) reflect how much the participant is deterministic. In
he main text, we report the correlations between corresponding
odel parameters from the healthy control group. The correlation
nalysis results from the heroin- and amphetamine-dependent
roups are reported in the supplementary material (Figs. S11
nd S12), which show similar patterns with the results from the
ealthy control group.
Fig. 5 shows the correlations between the corresponding pa-

ameter pairs. All of the pairs had strong correlations. Although
he correlation between the two inverse temperatures (τ ) was
elatively weak, it is acceptable as they are related to different
uantities; one is related to the number of pumps, and the other
s related to the subjective utility. The prior belief of success
φ) and the prior belief of burst (ψ) were negatively corre-
ated because the sum of the two probabilities should be 1 in
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Fig. 5. Correlations between the corresponding parameter pairs of the models. The blue lines indicate the regression lines of each graph. Shaded regions indicate
95% confidence intervals. For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.
Fig. 6. Posterior distributions of the group parameters with the exponential-weight mean–variance model (EWMV model). Tick marks on the bottom and top of each
graph indicate 95% highest density intervals (HDIs). Points in the middle of each graph indicate mean values. Asterisks indicate that the 95% HDIs of the posterior
distributions of group mean differences do not include zero (group differences were credible). See supplementary material for more information about the group
differences of model parameters (Fig. S9). ψ: prior belief of burst, ξ : updating exponent, ρ: risk preference, τ : inverse temperature, λ: loss aversion. HC: healthy
ontrol group, Her: heroin-dependent group, Amp: amphetamine-dependent group.
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n ideal case. The updating coefficient (η) and the updating
exponent (ξ ) were positively correlated because both of them
represent how rapidly the participant updates the belief based on
past experiences. Notably, the risk-taking propensity (γ ) and the
risk preference (ρ) showed a strong positive correlation, which
implicates that, like the risk-taking propensity, the risk prefer-
ence may reflect risk-taking tendency and be correlated with the
frequencies of the past real-world risky behaviors.

3.3. Group difference

As a way of evaluating the utility of the EWMV model, we ap-
plied the EWMV model to healthy and substance-dependent pop-
ulations (patients with past heroin or amphetamine dependence).
We analyzed the group differences of three groups (healthy con-
trol, heroin, and amphetamine-dependent groups; see below for
the details) for their behavioral performance and the parameter
estimates of the EWMV model (we also tested the Par4 model).

3.3.1. Behavioral performance
The heroin-dependent group displayed a marginally lower

adjusted BART score (95% HDI: [−9.73, 0.629], mean= −4.59;
5.9% of the posterior samples were smaller than 0) than the
mphetamine-dependent group. The result suggests that heroin
sers might show lower risk-taking than amphetamine users
uring the BART. See supplementary material for detailed infor-
ation on the behavioral performance and the group difference

n behavioral performance (Figs. S1 and S2).
 d

8

3.3.2. Model parameters
We estimated parameters of the EWMV model and the Par4

model for each group separately to compare the parameter val-
ues between the groups. Fig. 6 shows the posterior distribu-
tions of the group parameters for each group with the EWMV
model. The heroin-dependent group displayed credibly lower risk
preference (ρ) than the healthy control group (95% HDI of the
group difference: [−0.0064, −0.0005], mean: −0.0033) and the
mphetamine-dependent group (95% HDI of the group differ-
nce: [−0.0073, −0.0013], mean: −0.0042). The amphetamine-
ependent group displayed credibly higher risk preference (ρ)
han the healthy control group (95% HDI of the group difference:
0.0001, 0.0018], mean: 0.0009). Additionally, the amphetamine-
ependent group displayed credibly lower updating exponent (ξ )
han the healthy control group (95% HDI of the group difference:
−0.0046, −0.0001), mean: −0.0023).

Fig. 7 shows the posterior distributions of the group parame-
ers for each group with the Par4 model. The heroin-dependent
roup displayed credibly lower risk-taking propensity (γ ) than
he amphetamine-dependent group (95% HDI of the group dif-
erence: [−0.280, −0.012], mean: −0.151). Also, the heroin-
ependent group displayed higher inverse temperature (τ ) than
he amphetamine-dependent group (95% HDI of the group differ-
nce: [0.019, 0.070], mean: 0.044). See supplementary material
or detail information about the group differences of the model
arameters (Figs. S13 and S14).
The results of the behavioral performance and the model pa-

ameters are consistent. Among the three groups, the differences
etween the heroin-dependent and amphetamine-dependent
roups were the most noticeable. The heroin-dependent group

isplayed a marginally lower adjusted BART score, lower risk
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Fig. 7. Posterior distributions of the group parameters with the reparametrized version of the four-parameter model (Par4 model). Tick marks on the bottom and
top of each graph indicate 95% highest density intervals (HDIs). Points in the middle of each graph indicate mean values. Asterisks indicate that the 95% HDIs of the
posterior distributions of group mean differences do not include zero (group differences were credible). See supplementary material for more information about the
group differences of model parameters (Fig. S10). φ: prior belief of success, η: updating coefficient, γ : risk-taking propensity, τ : inverse temperature. HC: healthy
control group, Her: heroin-dependent group, Amp: amphetamine-dependent group.
preference (ρ), and lower risk-taking propensity (γ ) compared
to the amphetamine-dependent group. These results consistently
show that heroin users show lower risk-taking than
amphetamine users during the BART.

4. Discussion

The main focus of this study is on the development of a
novel BART model that addresses the limitations of existing mod-
els. We proposed a non-learning version of the four-parameter
model (Par3 model) and a reparametrized version of the four-
parameter model (Par4 model). By modifying equations from the
reparametrized version, we developed candidate models and se-
lected the best model (EWMV model) based on the leave-one-out
information criterion (LOOIC) and the parameter recovery. The
model comparison results suggest that the EWMV model shows
better prediction performance across all populations than the
other models and good parameter recovery. To examine whether
the EWMV model includes advantageous features of the four-
parameter model, we calculated the correlations between corre-
sponding parameter pairs for the Par4 and EWMV models. All of
the corresponding parameter pairs had strong correlations, which
implies that the EWMVmodel may include advantageous features
of the four-parameter model. As a way of evaluating the utility
of the EWMV model, we analyzed differences among substance-
using populations in behavioral performance and model param-
eters of the Par4 and EWMV models. The group differences in
behavioral performance and model parameters of the Par4 and
EWMV models were consistent. The results of the group dif-
ferences show that the EWMV model reveals group differences
among the groups more clearly than the behavioral performance
and the Par4 model, and provides a measure of an additional core
psychological construct of risk-taking behavior. Overall, these
results suggest that the EWMV model has distinct merits as a
computational model for the original BART paradigm.

An important finding of this study is that it suggests a way
to improve parameter recovery. We showed that reparametrizing
parameters associated with more than one role into parameters
with unique roles might help the model recover accurate pa-
rameter values. Adequate parameter recovery is a fundamental
assumption and necessary for analyzing parameters of a com-
putational model, and it is noteworthy that we can improve
parameter recovery by reparameterization alone. At the same
time, it is notable that the information criteria such as AIC, BIC,
and LOOIC for the reparametrized version and the original model

are more or less the same. It suggests that the reparametrized

9

version does not have additional explanatory power compared
with the original model. The results demonstrate that parameter
recovery and post hoc model fits measured with information
criteria reflect different aspects of computational models, and we
need to use both methods for comprehensive evaluation.

Besides the superior prediction performance and good pa-
rameter recovery performance, the EWMV model also has an
advantage that it provides a more interpretable learning process:
an agent estimates the present value as a weighted average
of the initial and observed value and updates the weight and
observed value as data accumulates. In addition, all parameters
included in the EWMV model have distinct and interpretable
roles. Also, the EWMV model might be applicable to a wide range
of cognitive tasks other than the BART. The weight updating
learning of the EWMV model is analogous to the Kalman filter,
an algorithm to track unknown state variables with uncertainty
(Welch & Bishop, 1995). Because the weight updating learning
model might be applicable to all situations that include initial
states and sequential observations, it might be an alternative
to other well-established models to quantify learning situations
such as the Rescorla–Wagner model (Rescorla & Wagner, 1972).

Utilizing the mean–variance analysis (Markowitz, 1952) is
another distinct feature of the EWMV model. Previous studies,
which compared the mean–variance analysis and the prospect
theory (Kahneman & Tversky, 2013), have suggested that their
performances are comparable (Boorman & Sallet, 2009; Hens &
Mayer, 2014; Levy & Levy, 2004). However, only a few models
(e.g., d’Acremont, Lu, Li, Van der Linden, & Bechara, 2009) directly
have utilized the mean–variance analysis to calculate subjective
utilities.

The group difference results show that the group differences in
model parameters of the EWMV model were consistent with the
group differences in other indices, including the behavioral per-
formance and model parameters of the Par4 model. One seeming
inconsistency is the results of the inverse temperature param-
eters in the EWMV and Par4 models. For the EWMV model,
all groups displayed no credible group differences in the in-
verse temperature, whereas, for the Par4 model, the heroin-
dependent group displayed higher inverse temperature than the
amphetamine-dependent group. The reason for this discrepancy
may be the two inverse temperatures are related to different
quantities. One is related to the subjective utility, whereas the
other is related to the number of pumps. Consequently, we did
not consider this discrepancy as an inconsistency. The consis-
tent group difference result may indicate that the EWMV model

appropriately reflects the participants’ risk-taking tendencies in
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heir behaviors. It is also consistent with the results of previ-
us studies showing that opiates (heroin) and stimulants (am-
hetamine) addictions are behaviorally and neurobiologically dis-
inct (Badiani, Belin, Epstein, Calu, & Shaham, 2011), related to
ifferent dopamine modulation mechanisms (Kreek et al., 2012),
nd characterized by different personality and neurocognitive
rofiles (Ahn & Vassileva, 2016).
Another key implication from the group difference results

s that the model parameters of the EWMV model reveal the
roup differences more clearly than the adjusted BART score and
he model parameters of the Par4 model. It is of note that the
roup difference results still remain valid after considering the
ias in the parameter recovery result of the risk preference for
he EWMV model because the similar biased patterns appear in
ll three groups. Namely, the EWMV model aligns better with
he clinical function of the BART, whose original purpose is to
dentify individuals who are prone to take risks. This implies that
he EWMV model may be potentially useful for classifying indi-
iduals into several clinical groups and establishing quantitative
iagnostic criteria for risk-taking behavior.
Providing a measure of loss aversion, which is a core psycho-

ogical construct of risk-taking behavior, is also advantageous to
he EWMVmodel. Previous studies analyzing risk-taking behavior
ave consistently shown that loss aversion plays a crucial role
n risk-taking behavior, and many computational models of ex-
erimental paradigms to investigate risk-taking tendency include
arameters of loss aversion (Ahn et al., 2008, 2011; Sokol-Hessner
t al., 2009; Worthy, Pang, & Byrne, 2013). This feature makes the
WMV model comparable with the other computational models
hat include loss aversion.

In conclusion, we proposed a novel model for the BART, called
he exponential-weight mean–variance (EWMV) model, using the
eight updating learning and the mean–variance analysis, which
ddresses the limitations of existing models. The EWMV model
utperformed other models in model fits and parameter recov-
ry performance. Also, its distinct merits come with a more
nterpretable learning process, more salient group differences
n model parameters between substance-dependent populations,
nd the existence of loss aversion parameter. Not limited to the
ART, we hope that the weight updating learning model and the
ean–variance analysis might apply to other cognitive tasks.
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