
https://doi.org/10.1177/09567976241228503

Psychological Science
 1 –13
© The Author(s) 2024
Article reuse guidelines: 
sagepub.com/journals-permissions
DOI: 10.1177/09567976241228503
www.psychologicalscience.org/PS

ASSOCIATION FOR
PSYCHOLOGICAL SCIENCEResearch Article

Self-report and behavioral task measures are among the 
most frequently used methods for assessing psycho-
logical constructs. A prevalent issue across multiple 
domains such as impulsivity (Sharma et al., 2014), self-
control (Saunders et  al., 2018), and risk preference 
(Frey et al., 2017) is that self-report and behavioral task 
measures consistently show weak correlations with 
each other, even when they are assumed to tap the 
same construct (Dang et al., 2020). Weak associations 
between measures of the same construct foster ambigu-
ity and confusion in assessment, making it challenging 
to integrate findings across different measures.

We address this problem using impulsivity as a test 
bed because it is one of the psychological constructs 
that is notably affected by the weak association between 
self-report and behavioral measures. Extensive studies 

of impulsivity in relation to mental disorders and mal-
adaptive behaviors (Whiteside & Lynam, 2001) have 
utilized a range of self-report and behavioral task mea-
sures that are believed to assess the same construct 
termed “impulsivity.” However, large-scale investiga-
tions and meta-analyses have consistently reported 
weak correlations between different measures of impul-
sivity (Bernoster et  al., 2019; Cyders & Coskunpinar, 
2012; White et  al., 1994). There is no consensus on 
whether different measures of impulsivity represent the 
same construct, and researchers continue to develop 
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Abstract
A major challenge in assessing psychological constructs such as impulsivity is the weak correlation between self-report 
and behavioral task measures that are supposed to assess the same construct. To address this issue, we developed a 
real-time driving task called the “highway task,” in which participants often exhibit impulsive behaviors mirroring real-
life impulsive traits captured by self-report questionnaires. Here, we show that a self-report measure of impulsivity is 
highly correlated with performance in the highway task but not with traditional behavioral task measures of impulsivity 
(47 adults aged 18–33 years). By integrating deep neural networks with an inverse reinforcement learning (IRL) 
algorithm, we inferred dynamic changes of subjective rewards during the highway task. The results indicated that 
impulsive participants attribute high subjective rewards to irrational or risky situations. Overall, our results suggest that 
using real-time tasks combined with IRL can help reconcile the discrepancy between self-report and behavioral task 
measures of psychological constructs.
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their own models and measures of impulsivity (Sharma 
et al., 2014).

A widely accepted approach is to view impulsivity 
as a multidimensional construct with distinct aspects 
that do not necessarily overlap. For example, MacKillop 
et al. (2016) suggested that measures of impulsivity can 
be categorized into three distinct domains: impulsive 
choice, impulsive action, and impulsive personality 
traits. According to this categorization, behavioral task 
measures, which reflect impulsive choice (e.g., delay-
discounting task; Green & Myerson, 2004) and impul-
sive action (e.g., go/no-go task; Hartung et al., 2002), 
do not need to correlate with self-report measures that 
typically reflect trait impulsivity (e.g., Barratt Impulsive-
ness Scale; Patton et al., 1995). A competing explana-
tion for the inconsistency between self-report and 
behavioral task measures of impulsivity is that they tap 
the same construct, but the association between them 
are obscured by differences in measurement methods 
(Cyders & Coskunpinar, 2012). Self-reports measure 
individuals’ overall tendencies over a longer duration 
of time (e.g., for the past week/month), whereas labo-
ratory behavioral tasks usually measure specific behav-
iors in some discrete states (e.g., go and no-go 
conditions in the go/no-go task) in highly controlled 
settings at the time of testing. Thus, behavioral task 
measures may capture state-specific phenomena that 
only partly reflect self-reported tendencies of behaviors 
across situations in real life.

Building on this methodological explanation, we 
postulate that a laboratory task conducted in real time 
that mimics real-life situations would yield impulsivity 
measures that are strongly correlated with self-reported 
impulsivity. Specifically, we developed and imple-
mented a real-time driving task called the “highway 
task” (Fig. 1) in which participants control a car on a 
simulated highway to drive as fast as possible without 

crashing into other cars. The performance in the task 
may reflect the traits that contribute to reckless driving, 
which is frequently associated with impulsivity (Hatfield 
et  al., 2017). Unlike traditional trial-based laboratory 
tasks with a predefined list of discrete states, the high-
way task provides trajectories of states that continu-
ously interact with participants’ actions (e.g., accelerating, 
changing lanes), with a number of possible states being 
virtually boundless (for details, see the Method section). 
Behaviors in this task can be a better reflection of trait 
impulsivity than traditional behavioral task measures 
because the task environment resembles complex real-
world situations in which impulsive behaviors occur 
(Verdejo-Garcia et al., 2021).

A challenge is how to describe complex data from 
the highway task beyond simple summary statistics of 
observed behaviors (e.g., mean speed, number of 
crashes). Computational modeling is widely recognized 
as a valuable tool for assessing neurocognitive charac-
teristics underlying behaviors (Palminteri et al., 2017). 
However, traditional computational models may not be 
readily applicable to data from real-time tasks (e.g., 
virtual reality, arcade-style games) because such models 
are not typically designed to describe multidimensional 
behaviors with an immense number of possible states 
inherent in a real-time task.

We pose this problem as an inverse reinforcement-
learning (IRL) problem in which the learning algorithm 
infers the reward function that underlies observed 
behaviors (Arora & Doshi, 2021). The objective of IRL 

Fig. 1. Screenshot of the highway task. Participants control the green 
car to drive as fast as possible without crashing into the yellow cars. 
Score per second increases with speed. An episode (or trial) con-
tinues until the car crashes or runs out of fuel. High score indicates 
the highest score achieved in an episode during the highway task.

Statement of Relevance

An important question in neuropsychological 
assessment is whether findings in laboratory exper-
iments represent how people function in everyday 
life. In psychological and neuroscience research, 
measures derived from behavioral tasks often 
exhibit weak association with self-reported mea-
sures of the same construct, presumably because 
of the limited capacity of simplistic laboratory tasks 
in capturing dynamic behavioral patterns in real-
world environments. Here, we show that a real-
time task that captures real-world dynamics of 
impulsive behaviors provides valid measures of 
impulsive traits, with an inverse reinforcement 
learning algorithm integrated with deep neural net-
works revealing dynamic changes of subjective 
rewards during the task. This highlights the impor-
tance of using realistic tasks and advanced algo-
rithms for characterizing individual traits.
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is opposite to the conventional “forward” approach of 
reinforcement learning (RL; Sutton & Barto, 2018); IRL 
learns a reward function on the basis of observed behav-
iors without any observed reward, whereas RL learns a 
behavioral policy on the basis of observed rewards. 
Recent advances in algorithmic techniques have made 
IRL well suited for explaining behaviors in complex 
environments (Fu et al., 2017; Wulfmeier et al., 2015). 
One of the breakthroughs is the use of deep neural 
networks (DNNs), which can represent complex associa-
tions between states and actions in real-time tasks (Mnih 
et al., 2015) to approximate complex, nonlinear reward 
functions (Wulfmeier et al., 2015). By integrating DNNs 
with IRL (i.e., deep IRL), we are not restricted to any 
particular functional form of rewards for observed 
behaviors. Once learned from the observed data, DNNs 
can calculate rewards for given states and actions. The 
rewards derived by IRL can be interpreted as a partici-
pant’s internal reward or preference, making it a valu-
able tool for modeling human decision-making (Zhang 
et al., 2018).

In the current study, we aim to find indicators of 
impulsivity in the highway task by comparing IRL-inferred 
reward functions among participants with varying levels 
of trait impulsivity. To our knowledge, this is the first 
study to use deep IRL to capture individual differences 
in a psychological construct among human participants. 
Although a few studies have modeled human decision-
making using simpler IRL algorithms using a restricted 
class of functional forms (Zhang et al., 2018), no other 
studies have utilized deep IRL to investigate individual 
differences in reward functions in real-time tasks.

If the behaviors exhibited in the highway task align 
with the hypothesized trait impulsivity, we would expect 
the task performance and the rewards inferred by IRL 
to correlate with measures of trait impulsivity. In our 
experiment, we assessed trait impulsivity using the 
Barratt Impulsiveness Scale (BIS; Patton et  al., 1995), 
which is a widely used self-report measure of impulsiv-
ity. The experiment consisted of three behavioral tasks, 
including the highway task and two traditional behav-
ioral tasks measuring impulsivity: delay discounting and 
go/no-go tasks. Whereas the latter two tasks measure 
impulsive choice and impulsive action, respectively, the 
highway task was chosen to examine its correlation with 
the BIS score compared with other measures.

In the following analysis, we evaluate the credibility 
of IRL in explaining individual differences in behavior 
by assessing its accuracy in predicting actions on the 
highway task. We then investigate the IRL-inferred 
reward for each state in the task as well as the real-time 
trajectory of the rewards to find indicators of impulsiv-
ity. Finally, the behavioral performance measures (e.g., 
task score) of the highway task and the output of the 
IRL are used together to predict the BIS score.

Open Practices Statement

All data, code, and materials for this study have been 
made publicly available on GitHub and can be accessed 
at https://github.com/CCS-Lab/project_highway_irl_
public. This study was not preregistered.

Method

Participants

Forty-seven undergraduate and graduate students (26 
males and 21 females) aged 18 to 33 years from Seoul 
National University participated. A Bayesian power 
analysis determined the number of participants (for 
details of the power analysis, see the Supplemental 
Material available online).

Procedure

Participants completed one questionnaire (the BIS) and 
three behavioral tasks (highway task, delay-discounting 
task, and go/no-go task) in a dimly lit room. They could 
take a break between the tasks as long as they desired. 
An experimenter gave instructions to the participants 
at the beginning of each task. The questionnaire was 
controlled by Qualtrics on a web browser. Behavioral 
experiments were controlled by a Python script. The 
experiment was approved by the Seoul National Uni-
versity Institutional Review Board.

Barratt Impulsiveness Scale. We used a Korean ver-
sion (Lee et al., 2012) of the BIS (Patton et al., 1995) to 
measure trait impulsivity. Participants answered the ques-
tions on a four-point scale from 1 (rarely/never) to 4 
(almost always/always), with 4 indicating the most impul-
sive response. The BIS score was calculated by summing 
the scores across questions. The subscales of BIS (i.e., 
motor, nonplanning, and attentional impulsivity) were 
the sums of the scores across subsets of questions (for 
the analysis using the BIS subscales, see the Supplemen-
tal Material).

Highway task. The highway task was built on a collec-
tion of OpenAI Gym (Brockman et  al., 2016) environ-
ments for driving tasks (Leurent, 2018). Task display and 
action input were controlled by the pygame package in 
Python (Version 3.9.7). The goal of the highway task is to 
drive the green car on the screen as fast as possible with-
out crashing into the yellow cars (for the task display, see 
Fig. 1). Participants control the green car by pressing the 
arrow keys on the keyboard. The left and right arrow 
keys decrease and increase the speed by 10 distances/s, 
respectively. The up and down arrow keys move the 
green car to the upper (left) lane and the lower (right) 

https://github.com/CCS-Lab/project_highway_irl_public
https://github.com/CCS-Lab/project_highway_irl_public
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lane, respectively. The score in an episode increases by 
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speed
 every 0.2 s. An episode continues until 

the remaining fuel becomes zero or the green car crashes 
into a yellow car. The remaining fuel, which is displayed 
on the top of the screen, starts at 60 and decreases at a 
rate of 1/s. Crashing into another car immediately 
decreases the score by 200. The score is reset to zero at 
the beginning of each episode. The highest score a par-
ticipant achieves in an episode is recorded as the high 
score (text below the road) until the participant scores 
higher in another episode (for additional details of the 
task, including how we determined the reward structure, 
see the Supplemental Material).

Traditional behavioral tasks. For details of the 
delay-discounting task and the go/no-go task, see the 
Supplemental Material.

IRL algorithm

We inferred the reward functions underlying the trajec-
tories of states and actions in the highway task using 
adversarial IRL (AIRL; Fu et al., 2017), which is an IRL 
algorithm that achieves state-of-the-art performance. 
IRL is a challenging problem because multiple policy 
and reward functions can explain a given set of 
observed behaviors, leading to ambiguity in the learned 
reward function (Arora & Doshi, 2021). AIRL is built on 
maximum-entropy IRL (Wulfmeier et al., 2015; Ziebart 
et al., 2008), which mitigates the ambiguity in a solution 
by identifying a single reward function that maximizes 
the entropy of the policy derived from the rewards 
(Snoswell et al., 2020). AIRL also addresses the com-
plexity of behaviors in a real-time task by using DNNs 
to approximate nonlinear reward functions, whereas 
many previously proposed IRL methods (e.g., Abbeel 
& Ng, 2004; Ziebart et al., 2008) assume linear reward 
functions that might be too simplistic in complex tasks 
(for details of the algorithm, see the Supplemental 
Material).

Results

We first assessed the validity of the highway task by 
correlating task-performance measures with the BIS 
scores, which we used as the benchmark measure of 
trait impulsivity in the current study. The focus is on the 
total BIS score rather than the three subscales of the 
BIS. Almost all measures that correlated with one of the 
BIS subscales also correlated with the total BIS score 
throughout the analyses in the current study (for results 
with the BIS subscales, see the Supplemental Material). 
Using the total BIS score was a comprehensive approach 

for identifying indicators of impulsivity while making 
the interpretation of the results straightforward.

We derived five intuitively important and easily inter-
pretable performance measures from the highway task: 
two indicators of risky driving in real life (mean speed 
and mean distance from the closest car ahead; Boyce 
& Geller, 2002), frequencies of two events related to 
the task goal (number of overtakes and number of 
crashes), and the mean task score, which assesses over-
all performance in the task (for score calculation, see 
the Method section). The credibility of correlation was 
assessed using the Bayes factor (BF10) in a Bayesian 
correlation test (Wetzels & Wagenmakers, 2012). Fol-
lowing the classification scheme in Wagenmakers et al. 
(2018), we interpreted BF10 values of 1 through 3, > 3 
through 10, > 10 through 30, > 30 through 100, and  
> 100 as anecdotal, moderate, strong, very strong, and 
extreme evidence, respectively.

Among the five measures, only the mean task score 
(M = 1,183, SD = 363, range = 533–2,174) showed strong 
statistical evidence for the Pearson correlation with the 
BIS score (r = −.46, BF10 = 28.41), suggesting that the 
overall task performance improves as the BIS score (i.e., 
impulsivity) decreases (see Fig. 2). The mean speed (r = 
.08, BF10 = 0.21), the mean distance from the car ahead 
(r = .08, BF10 = 0.21), the number of overtakes (r = −.35, 
BF10 = 2.96), and the number of crashes (r = .15, BF10 = 
0.3) did not show substantial evidence for correlation 
with the BIS score. This suggests that focusing on spe-
cific aspects of behaviors might not be sufficient to 
elucidate impulsivity in a complex behavioral task. The 
task score, which showed the strongest correlation, was 
also reliable within the task. The split-half reliability 
between the scores in the first half and the second half 
of the task assessed by the intraclass correlation coef-
ficient (Koo & Li, 2016) was .72, which is acceptable.

The BIS score did not correlate with widely used 
behavioral measures of impulsivity from the two tradi-
tional laboratory tasks—the delay-discounting rate 
parameter (log k; for a description of the model, see 
the Supplemental Material) in the delay-discounting 
task (r = .01, BF10 = 0.182) and the no-go error rate in 
the go/no-go task (r = .07, BF10 = 0.203). A Bayesian 
statistical test for comparing correlation coefficients 
(Mulder & Gelissen, 2023) indicated that the correlation 
coefficients between the BIS score and the two tradi-
tional measures differed from the correlation coefficient 
between the BIS score and the highway-task score (BF10 = 
3.53). The two traditional measures also showed weak 
associations with the five measures derived from the 
highway task in general. Only two combinations, the 
no-go error rate with the mean speed (r = −.38, BF10 = 
4.87) and the number of overtakes (r = −.37, BF10 = 
4.27), exhibited moderate evidence for correlations (for 
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the full correlation matrix, see Fig. S1 in the Supple-
mental Material).

The results support our hypothesis that a real-time 
task in a realistic environment would better reflect 
impulsivity than traditional trial-based tasks. The asso-
ciation between the performance on the highway task 
and the BIS score suggests that aspects of impulsivity 
observed in behavioral tasks (e.g., impulsive choice 
and action) may not be inherently distinct from self-
report measures of trait impulsivity.

IRL model evaluation

In the preceding analysis, the BIS score correlated with 
an overall performance in the highway task but not with 
a more specific summary of behaviors (e.g., mean 
speed). We hypothesized that reward functions inferred 
by IRL might provide state-specific indicators of impul-
sivity, which are not captured by simple summary sta-
tistics. IRL inferred a reward function for each individual 
on the basis of the individual’s observed trajectories of 
behaviors in the highway task (for details of the algo-
rithm, see the Supplemental Material). We investigated 
the individual differences in the reward functions learned 
via IRL to identify latent indicators of impulsivity.

Before interpreting the reward functions, we evalu-
ated the models trained by IRL in terms of goodness of 
fit and interpretability. The model fit was assessed by 
comparing observed participants’ actions with artificial 
agents’ actions generated by the behavioral policies of 
IRL. If IRL learned the reward functions that accurately 
explain the data, the actions produced by the agent 
should closely resemble the participants’ behaviors. Figure 
3a shows the mean accuracy of the IRL agents in pre-
dicting five possible actions in the highway task: moving 

up, no action (i.e., no-op), moving down, acceleration, 
and deceleration. The accuracy was much higher than 
the chance level (mean accuracy = .64; chance-level 
accuracy = .2) for all actions except the deceleration.

The IRL agents also showed similar proportions of 
actions throughout the action trajectory (Fig. 3b) to 
observed human actions. A noticeable difference 
between the IRL agents and the participants was that 
the participants showed a higher mean proportion of 
no actions. Cross et al. (2021) found comparable dif-
ferences in actions between humans and artificial 
agents trained by a forward RL. In their study, the policy 
learned via deep Q-learning (Mnih et al., 2015) showed 
a lower proportion of no actions in Atari games (classic 
video games such as Pong and Space Invaders) com-
pared with human participants. The authors postulated 
that humans are more inclined to abstain from taking 
action because of metabolic costs and physical con-
straints (e.g., response speed). Although the IRL agents 
learn from human demonstrations that reflect con-
straints on human behaviors, they might not replicate 
infrequent inaction because of fatigue or inattention in 
situations in which the participant typically took action.

The similarity between the participants’ actions and 
those of the IRL agents suggests that the reward func-
tions derived from IRL reflect subjective rewards under-
lying observed behaviors. We then assessed whether 
the IRL reward functions were sensible and interpre-
table by visually examining the reward functions. The 
DNNs trained by IRL approximated subjective rewards 
for all possible states in the task. The state in the task 
was defined as a combination of 11 manually annotated 
features: the speed of the own car, the lane in which 
the own car is located, the speed of other cars in each 
of the three lanes (three features for three lanes), the 
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distance from the closest car ahead in each lane (three 
features), and the distance from the closest car behind 
in each lane (three features). Figure 3c illustrates the 
mean reward function (averaged across participants) in 
a simplified state space. To visualize and interpret 
reward functions in a feasible way, we used mean 
rewards across the two intuitively important features 
selected in the task-performance analysis: own speed 
(Fig. 3c, y-axis) and the distance from the closest car 
ahead in the own lane (Fig. 3c, x-axis). The high-reward 
states (i.e., dark red area) in the reward function sug-
gests that the participants generally favored driving at 
a low to moderate speed (20−60) and a close to moder-
ate distance (10.5−63) from the closest car ahead. This 
reflected a rational strategy of avoiding a crash while 
attempting to overtake a car ahead (i.e., decreasing the 
speed when the distance between the own car and the 

car ahead is small). By contrast, the state with the small-
est distance and the highest speed was associated with 
extremely low rewards in that the state would likely 
result in a crash in the next step. The propensity to 
avoid a crash, which is the most punishing event in the 
task, is also reflected in the reward functions marginal-
ized over the speed and distance axes (Fig. 3d). The 
mean reward tended to increase with the distance from 
the car ahead and decrease with the speed, suggesting 
that the participants generally used a safe strategy.

The results suggest that IRL successfully inferred sen-
sible reward functions from the participants’ behaviors as 
we proposed. Nonetheless, our primary objective was 
to identify indicators of impulsive behaviors that may 
deviate from rational strategies in the highway task.  
To achieve this goal, we tested the correlation between 
the BIS score and the IRL reward within the simplified 
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state space shown in Figure 3c. In this analysis, both 
the speed and the distance were divided into 11 equally 
spaced intervals, resulting in an 11 × 11 discretized state 
space. The mean IRL rewards within four cells in the 
discretized state space showed statistical evidence for 
correlation with the BIS score. A higher BIS score (i.e., 
increased impulsivity) corresponded to higher rewards 
for apparently irrational states: maximum speed (120) 
at close distances (0–21) and relatively low speed (50) 
at far distances (74–84; r = .35–.39, BF10 > 3; for the 
correlation coefficients across the state space, see Fig. 
S2 in the Supplemental Material).

Analysis of IRL reward trajectories

The reward function generated by IRL provides a sim-
plified representation of how the participants’ behaviors 
were interpreted, but it does not depict changes in 
rewards over time. A real-time task involves trajectories 
of states and actions. The reward functions inferred by 
IRL can map these states into reward trajectories that 
reveal real-time changes in rewards around significant 
events. We investigated the reward trajectories and 
hypothesized that there might be indicators of impulsiv-
ity specific to a particular point in time during an event.

The analysis of reward trajectories focused on two 
salient events in the task: overtaking and crashing. These 
events are closely related to the task goal of achieving 
the highest possible score by quickly overtaking other 
cars without crashing into them. Video replays of task 
performance with a real-time display of the IRL reward 
revealed noticeable changes in rewards at the moments 
of overtaking and crashing (for a link to a video replay, 
see the Supplemental Material). This implies that the IRL 
algorithm identified these events as particularly critical. 
A subsequent analysis of reward trajectories indicated 
that IRL rewards during overtaking and crashing moments 
reflected participants’ impulsivity.

The moments of overtaking and crashing were man-
ually specified in the state space. Overtaking was 
defined as the moment at which a car from an adjacent 
lane went behind the participant’s car. The distances 
from other cars ahead and behind the participant’s own 
car were the state features used to identify overtaking 
moments. Further, two types of overtaking were distin-
guished: “active” overtaking, which occurred within 1 
s of changing lanes; and “passive” overtaking without 
a lane change. The screenshots at the bottom of Figure 
4 depict an example of each event. Active overtaking 
is more hazardous than passive overtaking because 
changing lanes for overtaking at a close distance can 
lead to a collision with a car ahead. We hypothesized 
that success in this risky behavior would be highly 
rewarding for impulsive individuals. A crash was 

straightforward to define because it was the moment 
at which the distance from a car ahead became zero.

Figure 4 shows the reward trajectories before and 
after overtaking (−3 to 1 s from the onset). To visually 
compare the reward functions between the participants 
with high and low impulsivity, we grouped the partici-
pants into two categories on the basis of their BIS 
scores: a “high-BIS” group and a “low-BIS” group (i.e., 
participants in the highest and lowest quartiles of the 
BIS score, respectively). This grouping was used solely 
for visually representing the reward trajectories; it was 
not used for statistical comparisons between groups. 
Statistical analysis was performed by correlating the 
reward value at each time point with the BIS score, 
using the data from all participants.

The reward trajectories for passive overtaking (Fig. 
4a) did not differ between the high- and low-BIS 
groups, with the IRL rewards showing no correlation 
with the BIS score at any of the 21 time points (−3 to 
1 s with a 0.2-s interval). By contrast, active overtaking 
revealed noticeable differences in the rewards between 
low- and high-BIS participants (Fig. 4b). Compared with 
the low-BIS group, the high-BIS group showed a more 
rapid increase in IRL rewards before overtaking. Statisti-
cal evidence supported the correlation between the BIS 
score and the IRL reward at −1.8 to −1.2 s (r = .46 and 
BF10 = 29.5 using the mean rewards across the four time 
points) and −0.2 s (r = .38, BF10 = 5.6) from the moment 
of active overtaking (red dots in Fig. 4b show the time 
points). The positive correlations suggest that impulsive 
participants favored the states with opportunities for 
active overtaking within a brief time frame (−1.8 to −1.2 
s), as well as the moment just before (−0.2 s) success-
fully accomplishing it.

Reward trajectories for overtaking are likely to reflect 
the participants’ intention because participants should 
overtake as many cars as possible to maximize the task 
score. Another salient event, crashing, is different in 
that it is an abrupt and unintentional event that should 
be avoided. Therefore, the analysis of crashing focused 
on how the participants reacted shortly before a crash 
to avoid it. We classified the reward trajectories for 
crashing into three types on the basis of the action 
immediately before a crash: no action, lane changing, 
and deceleration. Acceleration was not considered 
because it rarely occurred (1.3%).

For each type of reward trajectory, we tested the 
correlation between the BIS score and the reward val-
ues at 11 time points (−2 to 0 s from a crash with a 
0.2-s interval). Only one specific occasion, the moment 
of crashing in which the participants decelerated, showed 
statistical evidence for the correlation (r = .38, BF10 = 
4). Impulsive participants (i.e., high-BIS group) heavily 
discounted the reward for deceleration immediately 
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before (−0.2 to 0 s) a crash, whereas nonimpulsive 
participants (i.e., low-BIS group) showed relatively 
steady rewards until the occurrence of a crash (for the 
reward trajectories for crashing, see Fig. S3). This sug-
gests that impulsive participants disliked the states in 
which they had to decelerate to avoid crashing.

To summarize, the rewards inferred by IRL provided 
specific indicators of impulsivity as we hypothesized. 
The correlation between the rewards and the BIS score 
was selective yet sensible and interpretable. The results 
suggest that IRL can identify specific instances when 
participants exhibit impulsivity in real-time tasks, which 
may not be apparent in the summary of behaviors.

Regression analysis with indicators  
of impulsivity

The preceding analyses found several indicators of 
impulsivity, one from a performance measure (i.e., task 
score) and others from rewards inferred by IRL. The 
variables that respectively correlate with the BIS score 
raise a question of whether using them altogether 
would help explain individual differences in impulsiv-
ity. To compare the informativeness of different types 

of variables, we predicted the BIS scores across indi-
viduals with regression analysis (i.e., lasso; Tibshirani, 
1996) using performance measures in the highway task 
and IRL measures. Performance measures in the high-
way task included the score, mean speed, mean dis-
tance from the car ahead, number (n) of overtakes, and 
number (n) of crashes. In the models that used IRL 
rewards, only the rewards that correlated with  
the BIS score were included. They were the mean of the 
rewards for the subset of states that correlated with the 
BIS score in the two-dimensional state space depicted 
in Figure 3c (IRL speed × distance), mean of the rewards 
marked by red points in the reward trajectory for active 
overtaking (IRL overtaking), and the reward for decelera-
tion at the moment of a crash (IRL crash).

Figure 5 shows the results from lasso, which was 
conducted using the glmnet (Friedman et al., 2010) and 
easyml package (Ahn et  al., 2017) in Python. Model 
prediction was evaluated by the correlation between 
predicted and observed values of the BIS score in the 
test set. The histograms in Figure 5 illustrate the distri-
bution of the correlation coefficients. The performance 
measures in the highway task showed a correlation 
similar to the correlation between the task score and 
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the BIS score (Fig. 5a; r = .48 vs. .46), with the task 
score explaining most of the variance (see beta coef-
ficients depicted on the right-hand side of Fig. 5). The 
selected variables from the IRL reward function were 
better than the performance measures at predicting the 
BIS score (Fig. 5b; r = .72). Finally, a model with both 
performance measures and IRL measures did not show 
a better correlation score than the “IRL-only” model 
(Fig. 5c; r = .72), suggesting that the behavioral perfor-
mance measures do not explain additional variance in 
the BIS score beyond the variance explained by IRL 
rewards.

Discussion

The lack of correlation between self-report and behav-
ioral task measures of psychological constructs has long 

been a puzzle. We hypothesized that this discrepancy 
may be attributed to the simplicity of traditional behav-
ioral tasks rather than to behavioral task measures 
assessing aspects of impulsivity that are inherently dis-
tinct from self-reported trait impulsivity. Our findings 
regarding impulsivity demonstrate that measures 
derived from a real-time behavioral task do indeed cor-
relate with a relevant self-report measure. This suggests 
that behavioral task measures can represent individual 
traits measured with a self-report questionnaire if the 
task offers a wide range of states in which participants 
can exhibit diverse behaviors as they do in real-world 
situations.

The novelty of the current study stems from using a 
deep IRL algorithm to extract participants’ reward func-
tions and individual differences in a real-time task. Past 
studies that associated impulsivity with driving behavior 
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in real-world and simulated environments typically 
focused on simple summary statistics of behaviors such 
as speeding, crashing, and traffic violations (Bıçaksız 
& Özkan, 2016; Jongen et  al., 2011), which often 
showed weak correlations with measures of impulsivity 
(Hatfield et  al., 2017). However, we found stronger 
indicators of impulsivity from IRL rewards than from 
summary statistics (e.g., mean speed, number of 
crashes). This suggests that IRL offers more than just a 
descriptive analysis because the reward functions can 
provide insights into participants’ characteristics that 
may not be apparent in their behaviors.

The successful application of IRL in this study high-
lights the potential of IRL as a modeling framework for 
addressing the discrepancy between behavioral task 
measures and self-report measures using real-time 
tasks. The measures derived from IRL outperformed the 
simple performance measures in predicting the BIS 
score in the regression analysis (Fig. 5), suggesting that 
a real-time task may not fully utilize its capacity to 
reflect a self-reported trait if the analysis method does 
not align with the complexity of the task.

Black-box machine learning models, which include 
DNNs in the current IRL algorithm (Fu et al., 2017), have 
demonstrated high predictive performance but often lack 
interpretability in their predictions (Rudin, 2019). This 
absence of explanatory power has restricted the use of 
black-box models in human-behavior research, in which 
explanation is as important as prediction (Yarkoni & 
Westfall, 2017). IRL addresses this issue by providing 
each participant’s rewards, which can be interpreted 
similarly to subjective values in computational models 
of decision-making (e.g., Kable & Glimcher, 2007). Par-
ticipants would choose actions of the highest subjective 
values (or IRL reward) or actions leading to the states 
with the highest subjective values. This approach 
enhances the interpretability of the model, making it 
more suitable for studying human behaviors.

Having behavioral task measures of trait impulsivity 
might help address some concerns about self-report 
measures. Concerns regarding the credibility of self-
report measures exist because of potential response 
biases, which include responses influenced by social 
desirability, a consistent response tendency toward 
affirmative or negative responses, and a propensity for 
extreme or midpoint responses (Furnham & Henderson, 
1982). In a naturalistic paradigm such as the highway 
task, participants are less likely to mask their traits or 
intentionally influence the assessment because they are 
not directly questioned about their real-life tendencies 
and behaviors.

Although we used the BIS score to assess trait impul-
sivity in the current work, it might not comprehen-
sively represent all aspects of trait impulsivity. Trait 
impulsivity, as measured by self-report questionnaires, 

might exhibit multiple facets. Factor analyses of self-
report measures of impulsivity often produce multiple 
factors (Sharma et al., 2014; Whiteside & Lynam, 2001), 
with some factors not aligning with any subscale of the 
BIS (e.g., sensation seeking). Future research may use 
other questionnaires (e.g., Whiteside & Lynam, 2001) to 
associate additional facets of impulsivity with measures 
obtained from the highway task or other real-time tasks.

Future research should also assess the validity of the 
highway task with clinical populations, addressing the 
significant challenge of a lack of behavioral tasks with 
clinical utility in mental health (Ahn & Busemeyer, 2016). 
A naturalistic paradigm such as the highway task is a 
great candidate given that the task is emotionally engag-
ing and easily understandable because of its real-life 
parallels. Our follow-up study aims to investigate 
whether patients with psychiatric disorders characterized 
by impulsivity (e.g., substance use disorders, attention- 
deficit hyperactivity disorder) exhibit reduced perfor-
mance scores and altered IRL reward functions during 
the highway task compared with healthy individuals.

A remaining question is whether the rewards inferred 
by IRL truly represent the internal rewards experienced 
by participants as hypothesized. A promising approach 
to address this question would be to investigate the 
associations between reward functions learned via IRL 
and brain activities related to reward (or value) process-
ing. Rewards inferred by IRL might correspond to the 
representation of subjective values of predicted out-
comes in the brain, which has been shown to correlate 
with functional MRI activity in regions such as the orbi-
tofrontal cortex (Gottfried et  al., 2003), ventromedial 
prefrontal cortex (Paulus & Frank, 2003), and ventral 
striatum (Kable & Glimcher, 2007). Predicting real-time 
changes in brain activities in these areas using the IRL 
rewards would help interpret IRL reward functions as 
subjective value functions that underlie human decision- 
making. This approach would also validate the use of 
IRL in understanding the relationship between rewards 
and their neural correlates.

The current study focused on impulsivity measures, 
but our approach can be applied to other real-time 
tasks assessing different constructs (Anguera et  al., 
2013). The use of the highway task aligns with recent 
studies using realistic and real-time tasks to enhance 
the ecological validity of neuropsychological assess-
ment (Robertson & Schmitter-Edgecombe, 2017). The 
adoption of real-time tasks and data has increased 
because recent technological advances (e.g., virtual 
reality, mobile devices) have facilitated experiments in 
realistic settings (Parsons, 2015). Our work suggests 
that deep IRL serves as a practical modeling framework 
that enables researchers to fully utilize complex data 
from real-time tasks without being restricted to simple 
descriptive analysis. Reward functions inferred by a 
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deep IRL algorithm might reflect participants’ subjective 
rewards or intentions in the task, which are central 
variables in the theories and models of decision-mak-
ing. In summary, the combination of real-time tasks and 
deep IRL offers a promising novel approach to improv-
ing the assessment of psychological constructs underly-
ing human behaviors and decision-making.
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