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A B S T R A C T   

Objectives: Addictions have recently been classified as substance use disorder (SUD) and behavioral addiction 
(BA), but the concept of BA is still debatable. Therefore, it is necessary to conduct further neuroscientific research 
to understand the mechanisms of BA to the same extent as SUD. The present study used machine learning (ML) 
algorithms to investigate the neuropsychological and neurophysiological aspects of addictions in individuals 
with internet gaming disorder (IGD) and alcohol use disorder (AUD). 
Methods: We developed three models for distinguishing individuals with IGD from those with AUD, individuals 
with IGD from healthy controls (HCs), and individuals with AUD from HCs using ML algorithms, including L1- 
norm support vector machine, random forest, and L1-norm logistic regression (LR). Three distinct feature sets 
were used for model training: a unimodal-electroencephalography (EEG) feature set combined with sensor- and 
source-level feature; a unimodal-neuropsychological feature (NF) set included sex, age, depression, anxiety, 
impulsivity, and general cognitive function, and a multimodal (EEG + NF) feature set. 
Results: The LR model with the multimodal feature set used for the classification of IGD and AUD outperformed 
the other models (accuracy: 0.712). The important features selected by the model highlighted that the IGD group 
had differential delta and beta source connectivity between right intrahemispheric regions and distinct sensor- 
level EEG activities. Among the NFs, sex and age were the important features for good model performance. 
Conclusions: Using ML techniques, we demonstrated the neurophysiological and neuropsychological similarities 
and differences between IGD (a BA) and AUD (a SUD).   

1. Introduction 

Addictions have recently been divided into two categories: substance 

use disorder (SUD, i.e., substance addiction) and behavioral addiction 
(BA, i.e., non-substance addiction). SUD is defined by patterns of 
symptoms produced by the use of a substance that an individual 
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continues to consume, despite its adverse effects [1]. BA is defined as a 
set of behaviors on which the individual becomes dependent, such as 
gambling addiction [2]. BA is similar to SUD, with the exception that the 
individual is addicted to the behaviors or mood caused by the relevant 
activity, rather than substance [3]. There is substantial overlap between 
BA and SUD in many domains, including natural history, phenomenol-
ogy, tolerance, comorbidity, overlapping genetic contributions, neuro-
biological processes, and therapeutic response [3–5]; in fact, in 2018, 
the World Health Organization (WHO) recognized gambling and gaming 
disorder as a significant public health issue and included it as “disorders 
due to addictive behaviors” in the 11th Revision of the International 
Classification of Diseases (ICD-11) [6]. The notion of BA has some sci-
entific and clinical heuristic significance, but it is still debated [7]. In 
particular, previous studies emphasize the need for more research in the 
disciplines of neurobiology, including neuroimaging, to understand the 
BA mechanism to the same degree as that of SUD [4,8,9]. 

Internet gaming disorder (IGD), an emerging BA, is defined by the 
Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition 
(DSM-5) as the persistent and frequent use of online games that causes 
clinically significant impairment or distress and withdrawal symptoms 
[1]. Individuals with internet addiction have a high prevalence of SUD, 
particularly alcohol use disorder (AUD) [10]. Furthermore, IGD shares 
several psychological features with AUD including dysfunctional 
impulsivity, limited capacity for self-control, excessive anxiety, and se-
vere psychopathological impairment [11,12]. However, those studies 
are limited in that they mainly rely on self-report. To clarify the 
neurobiological mechanism underlying BA, objective and validated 
neurophysiological assessments are necessary. 

Electroencephalography (EEG), an electrophysiological method for 
recording electrical activity emanating from the human brain, may offer 
the means of an objective measurement. The use of EEG for the evalu-
ation of psychiatric disorders can enhance the spatial and temporal 
characterization of cortical circuits and systems involved in cognitive 
functions and behavioral planning, execution, and assessment [13]. 
Previous studies have attempted to compare the EEG activity of IGD 
with that of AUD to clarify the neurological underpinnings of BA. Son 
et al. [14] provided neurophysiological evidence to support the 
distinctive features of IGD separate from AUD. The authors demon-
strated that reduced absolute beta power can be employed as a possible 
IGD characteristic marker, whereas higher absolute power in the delta 
band can be a risk factor for AUD. Another study showed that in-
dividuals with IGD and AUD have distinct coherence, which represents 
connectivity between two EEG sensors, and IGD may have a key 
neurophysiological characteristic of increased gamma coherence [15]. 
Nonetheless, the neurophysiological bases of both addictions have yet to 
be resolved. 

Furthermore, the abovementioned studies examined only one or two 
dimensions of sensor-level EEG features, such as relative power, abso-
lute power, or coherence. BA and SUD commonly involve changes in 
high-order brain networks [16]. The aim for researchers and clinicians is 
to identify the specific brain regions associated with EEG signals and to 
clarify the neural correlates of IGD and AUD. Although EEG is praised for 
its high temporal resolution, its spatial resolution is not as accurate as 
that of other neuroimaging tools. This limitation arises because sensor- 
level EEG recordings can become distorted or blurred because of volume 
conduction or shared sources [17]. However, it can be overcome by 
employing algorithms identified to locate the sources of these signals 
[18]. As a result, examining the network at the source-level is beneficial 
because it offers a more direct representation of the brain's connections, 
rather than focusing on the connections between EEG sensors [19]. A 
recent meta-analysis found that both BA and SUD share changes in 
resting-state functional connectivity (FC) between the frontoparietal 
network and various high-level neurocognitive networks, including the 
default mode network (DMN), affective network, and salience network 
(SN) [20]. Research on source-level EEG FC has focused primarily on the 
involvement of the DMN, reward network (RN), and SN during resting 

state, establishing links between these networks and observed neural 
patterns in IGD and AUD [21–24]. FC within DMN reflects the brain's 
resting neural activities and baseline mood states [25]. Addiction is 
associated with increased activity in the RN and SN, which is correlated 
with decreased cognitive control and impaired executive function [26]. 
However, there remains a lack of studies comparing source-level EEG 
connectivity between individuals with IGD and those with AUD. 
Therefore, further research is needed to investigate the neurophysio-
logical activity within high-level neurocognitive networks in order to 
identify critical information about the underlying neurophysiological 
mechanism of both addictions. 

A machine-learning (ML) method is particularly beneficial when 
there are a significant number of predictor variables compared to the 
number of samples, or when the focus is on the reliability and general-
izability of measurements [27]. ML methods, due to their ability to 
handle complexity and high dimensions, are suitable for analyzing EEG 
data and enable the processing of integrated patterns compared to 
traditional analysis [28]. Recently, the integration of multimodal, multi- 
feature ML applications has emerged as significant focus in medical 
research. These applications excel in disease classification and predic-
tion, providing more in-depth insights into disease development and 
treatment outcomes surpassing traditional analytic methods such as 
regression analyses [29]. A magnetic resonance imaging (MRI) study 
demonstrated that a ML classifier, developed using a combination of 
structural, task-based, and resting-state MRI data, can effectively di-
agnose alcohol dependence. This novel multimodal approach out-
performs a single imaging modality [30]. Another study suggested that 
the prediction accuracy for IGD was improved by using ML methods 
along with a combination of various types of data, such as clinical fea-
tures, positron emission tomography scans, and EEG [31]. 

Several studies have attempted to detect IGD or AUD using unimodal 
EEG features via the application of ML techniques [21,32–35]. To the 
best of our knowledge, no previous research has leveraged multimodal 
data through ML methods to identify the neurobiological mechanisms of 
AUD and IGD yet. This study utilizes a range of ML algorithms, including 
the L1-norm support vector machine (SVM), random forest (RF), and L1- 
norm logistic regression (LR), to distinguish between IGD and AUD, IGD 
and healthy controls (HC), as well as between AUD and HCs. Our 
analysis includes three distinct sets of features: 1) a unimodal EEG 
feature set that includes sensor-level and source-level data; 2) a unim-
odal neuropsychological feature set (NFs); and 3) a multimodal feature 
set using a cross-validated deviance weighted probabilistic ensemble 
method. We hypothesize that there will be significant similarities and 
differences in the neurophysiological and neuropsychological patterns 
between individuals with IGD and AUD. Furthermore, we suggest that 
the use of a multimodal data approach would be more effective in dis-
tinguishing between IGD and AUD compared to using unimodal feature 
sets. 

2. Material and methods 

2.1. Participants 

In all, 67 individuals with IGD (63 males and 4 females), 58 in-
dividuals with AUD (46 males and 12 females), and 66 HCs (56 males 
and 10 females), for a total of 191 participants, were recruited from the 
outpatient clinic of SMG-SNU Boramae Medical Center and the sur-
rounding community. All of the participants were medication-naïve and 
right-handed. None of the participants had any comorbid psychiatric 
diagnoses, such as attention-deficit hyperactivity disorder, depressive 
disorders, or anxiety disorders. They also did not have a history of 
psychotic or neurological disorders, significant head injury, seizure, or 
intellectual disability (intelligence quotient [IQ] < 80). Based on the 
DSM-5 criteria, a clinically experienced psychiatrist diagnosed in-
dividuals with IGD or AUD. Participants reported the severity of IGD and 
AUD via the Young Internet Addiction Test (IAT) [36,37], modified for 
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application to IGD [23,38] and the Alcohol Use Disorders Identification 
Test (AUDIT) [39,40]. All HCs were recruited from the local community 
and universities. None of the HCs had a history of any psychiatric dis-
ease, and they all played internet games for <2 h each day according to 
previous studies [14,41]. 

The Institutional Review Board of SMG-SNU Boramae Medical Cen-
ter approved the study protocol, and the study adhered to the principles 
of the Declaration of Helsinki. Before taking part in the study, all par-
ticipants were made aware of the procedure and each provided written 
informed consent. 

2.2. EEG features 

2.2.1. Data collection 
The participants were situated in a sound-shielded room connected 

to the recording room through a one-way glass window in a resting 
position. EEG was recorded for 10 min: 5 min with eyes closed, and 5 
min with eyes open, using a 64-channel (sensor) Quik-Cap (Compu-
medics Neuroscan, El Paso, TX, USA) following the modified Interna-
tional 10–20 system in conjunction with vertical and horizontal 
electrooculogram recordings and one bipolar reference electrode 
attached to the mastoid. All EEG recordings were obtained using Syn-
Amps 2 (Compumedics, Abbotsford, Victoria, Australia) and the Neu-
roscan system (Scan 4.5; Compumedics). The EEG signals were 
amplified using a 0.1–100 Hz online bandpass filter and a 0.1–50 Hz 
offline bandpass filter at a sampling rate of 1000 Hz. The electrode 
impedance was maintained below 5 kΩ. 

2.2.2. Data preprocessing 
All acquired EEG data were processed using NeuroGuide software 

(NG; ver. 3.0.5; Applied Neuroscience, St. Petersburg, FL, USA). For the 
analysis, 19 of the 64 channels were chosen using the following montage 
of linked-ear references from NG: Fp1, Fp2, F3, F7, Fz, F4, F8, C3, Cz, C4, 
T3, T5, T4, T6, P3, Pz, P4, O1, and O2. Artifacts were eliminated using 
the NG artifact rejection toolbox, and artifact-free epochs with the eyes- 
closed condition were chosen for the analysis. The source- and sensor- 
level EEG features were computed for each of the following frequency 
bands: delta (1–4 Hz), theta (4–8 Hz), alpha (8–12 Hz), beta (12–25 Hz), 
and gamma (30–40 Hz). 

The source-level FC analysis using the standardized weighted low 
resolution electromagnetic tomography (swLORETA) was conducted via 
NeuroNavigator software (NG Deluxe 3.0.5; Applied Neuroscience). 
This technique, known as a three-dimensional electrical neuroimaging 
method, utilizes a real MRI with 12,270 voxels [42,43]. The Neuro-
Navigator software provides specific network nodes based on Brodmann 
areas (BA) [44,45]. The list below includes the twenty regions of in-
terests (ROIs) for the DMN in both the left and right hemispheres: the 
prefrontal cortex (PFC, BA10), orbitofrontal cortex (OFC, BA11), medial 
temporal lobe and parahippocampal gyrus (MTL&PHG, BA35), post-
central gyrus (PCG, BA2), angular gyrus and inferior parietal lobe 
(AG&IPL, BA39), inferior parietal lobe (IPL, BA40), posterior cingulate 
and superior transverse temporal gyrus (PCC&STG, BA29), posterior 
cingulate and cuneus (PCC&Cnu, BA30), supramarginal gyrus (SMG, 
BA7), and occipital cortex (OC, BA19). The reward-salience network 
(RSN) is made up of edges from the RN and the SN, with duplicated 
edges removed. The twelve ROIs for the RN on the left and right sides are 
as follows on the left and right hemispheres: the inferior frontal lobe 
(IFL, BA47), inferior frontal and extra-nuclear gyrus of the prefrontal 
lobes (IFL&ENG, BA44), middle frontal gyrus (MFG, BA46), superior 
temporal gyrus and subcallosal gyrus-entorhinal area (STG&SGTA, 
BA34), anterior cingulate cortex (ACC, BA24), and insula (In, BA13). 
Fourteen ROIs for the SN are adopted as follows: the PFC (BA10), tem-
poral lobe (TL, BA22), ACC (BA24), posterior cingulate cortex (PCC, 
BA23), PCC&STG (BA29), PCC&Cnu (BA30), and In (BA13). 

The preprocessed EEG data were segmented into epochs and trans-
formed into the frequency domain using fast Fourier transforms. 

Relative power is the amount of power within a specific frequency band 
in relation to the total power across all frequency bands. The coherence 
was calculated for each possible pair of19 sensors, resulting in 171 
unique pairs for each frequency band. Detailed information regarding 
the sensor-level features has been previously discussed in other studies 
[14,15,46]. 

2.3. Neuropsychological features 

The intensity of depression symptoms was assessed by the Korean 
version of the Beck Depression Inventory-2 (BDI) [47,48]. Items were 
scored on a 4-point Likert scale with higher scores indicating more se-
vere depressive symptoms. The level of anxiety during the previous 
week was measured using the Korean version of the Beck Anxiety In-
ventory (BAI) [49,50]. The items were rated on a 4-point Likert scale, 
with higher scores indicating more intense anxiety symptoms. The de-
gree of impulsivity was measured using the total score of the Barratt 
Impulsiveness scale-11(BIS-11) [51]. BIS-11 includes 23 questions, each 
scored from 1 to 4. To assess general cognitive functions, IQ levels were 
estimated with the Korean version of the Wechsler Adult Intelligence 
Scale fourth edition (K-WAIS- IV) [52]. 

The NFs were analyzed using the chi-square test and one-way anal-
ysis of variance using Python libraries. The effect size for group com-
parisons was calculated using the partial eta squared (η2

p). P < 0.05 was 
considered indicative of statistical significance. The Bonferroni post-hoc 
test was also performed (p < 0.0167). Table 1 presents the features used 
for model training. 

2.4. Algorithms 

We used three algorithms for model training based on previous ML 
studies of EEG features [21,53]: L1-norm SVM, RF, and L1-norm LR. 
Notably, the L1-norm penalty used in SVM and LR works better for high- 
dimensional low-sample size data [54,55]. The statistical and ML ana-
lyses were conducted using Python 3.8 and its associated packages. 

2.5. Evaluation of model performance for unimodal and multimodal 
feature sets 

One of the main purposes of this study was to identify the benefits of 
using a multimodal feature set instead of a unimodal feature set. 
Therefore, we compared algorithm performance between unimodal and 
multimodal feature sets. Leave-one-out cross-validation (LOOCV; outer 
loop) was used to evaluate the performance of the unimodal feature sets. 
All samples (Nsample), except for one, were used to train the classification 
model, and one sample was used to obtain a prediction from the trained 
model. This procedure was repeated for all of the samples (Nsample 
times). The GridSearchCV method was utilized to perform 10-fold cross 
validation (CV; inner loop), which used to select the optimal 

Table 1 
Features used for model training.  

EEG features Neuropsychological 
features 

Source-level Sensor-level 

Connectivity within the default mode 
network 

Absolute 
power 

Sex 

Connectivity within the reward- 
salience network 

Relative 
power 

Age  

Coherence Level of depression   
Level of anxiety   
Level of impulsivity   
Intelligence quotient (IQ) 

Note. Depression, anxiety, impulsivity, and IQ were assessed using the Beck 
Depression Inventory-2, Beck Anxiety Inventory, Barratt Impulsivity Scale 
(version 11; total score), and Korean version of the Wechsler Adult Intelligence 
Scale (fourth edition), respectively. 
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hyperparameters and train the model for each algorithm [56]. The range 
of candidate values is shown in Supplementary Table S1. Within the 
LOOCV, feature selection was conducted using wrapper methods (L1- 
norm and RF) to prevent overfitting from data leakage [57,58]. 

Calculation of the accuracy of each algorithm and the procedure used 
for merging distinct modality feature sets based on CV deviances, are 
described in Fig. 1. For the models using the multimodal feature set, we 
used a CV deviance weighted probabilistic ensemble method that was 
adapted from an earlier study [59]. This method combines models based 
on their CV performance while considering their contributions based on 
deviance and weighted probabilities. Training models on multimodal 
feature selection, including EEG and NFs, can lead to the exclusion of 
some features. However, using the CV-deviance weighted probabilistic 
ensemble method, we combined two modalities without excluding any 
features. We calculated the deviances (negative log loss) of the trained 
models with the trained samples and computed classification probabil-
ities of the one test sample that was not used for training. We performed 
a weighted average of the probabilities based on the deviances and 
determined the class based on the weighted probabilities. This proced-
ure was repeated Nsample times (LOOCV) and the accuracy of the models 
was calculated depending on the predicted and the actual classes. The 
sensitivity of the model, which is its ability to correctly identify in-
dividuals with addictions, and its specificity, which is its ability to 
recognize individuals without addictions, were assessed. IGD was 
labeled as 1 for distinguishing between IGD and AUD. To assess the 
significance of the accuracy of our best model and feature set, we per-
formed a permutation test with 1000 iterations [60]. This involves 
comparing the observed data with a dataset that has randomly shuffled 
labels. The p-value was determined by comparing the frequency at 
which the permuted data's accuracy exceeded that of the original data 
[61]. 

2.6. Feature importance 

Feature importance was assessed by conducting 100 permutations to 
consider the variability in CV. The computation of feature importance 
involved using the entire dataset, as well as an inner loop CV process. A 

threshold of 0.5 was set for the survival rate, and any feature that fell 
below this rate was discarded. The top 10 features with the highest 
importance were selected as key features. 

3. Results 

3.1. Neuropsychological features 

The group differences in NFs are shown in Table 2. The chi-square 
test showed that there were no significant differences between males 
and females (p = 0.052). Patients with AUD were older than those with 
IGD and the HCs (IGD, 23.881 ± 5.401; AUD, 28.241 ± 5.417; HC, 
24.939 ± 3.229; p < 0.001; η2

p = 0.129). The severity of IGD (IAT) was 
greater in the IGD group compared to the AUD and HC groups (IGD, 
64.672 ± 15.828; AUD, 32.988 ± 10.911; HC, 29.766 ± 9.978; p <
0.001; η2

p = 0.621), whereas the severity of AUD (AUDIT) was greater in 
the AUD group compared to the IGD and HC groups (IGD, 5.660 ±
4.799; AUD, 25.491 ± 7.201; HC, 4.943 ± 3.403; p < 0.001; η2

p =

0.759). Patients with IGD and AUD had more severe depressive symp-
toms (BDI; IGD, 19.737 ± 11.398; AUD, 22.047 ± 15.157; HC, 4.263 ±
4.396; p < 0.001; η2

p = 0.343), anxiety symptoms (BAI; IGD, 15.830 ±
13.184; AUD, 20.090 ± 14.538; HC, 5.040 ± 5.458; p < 0.001; η2

p =

0.230), and impulsivity (BIS-11; IGD, 68.632 ± 11.060; AUD, 69.443 ±
11.673; HC, 55.460 ± 8.269; p < 0.001; η2

p = 0.282), and lower IQs 
(IGD, 108.065 ± 13.947; AUD, 105.197 ± 12.253; HC, 117.364 ±
11.790; p < 0.001; η2

p = 0.144), than HCs. 

3.2. Model performances 

The performance results for the model on the test set, as obtained 
through LOOCV, are presented in Table 3. The LR model with the 
multimodal feature set showed superior classification performance for 
IGD and AUD (accuracy: 0.712; p < 0.001) compared to the models with 
the other feature sets (EEG; accuracy: 0.672, NF; accuracy: 0.656). In 
addition, in the classification of IGD and HCs, the multimodal model had 

Fig. 1. Flowchart for calculating the accuracy of each algorithm and illustration of different feature set combinations based on cross-validation (CV) deviances. Using 
leave-one-out CV (LOOCV), individual algorithms, including L1-norm support vector machine, random forest, and L1-norm logistic regression, were trained on 
electroencephalography (EEG) or neuropsychological features (NF), and the accuracy of the models was calculated. Ten-fold CV was employed for hyperparameter 
selection and model training for each algorithm. To combine EEG and NF sets, the probabilities of a test set from each algorithm were weighted based on CV 
deviance. Then the weighted probabilities from the algorithms were integrated to calculate the multimodal ensemble accuracy. 
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greater accuracy (RF; accuracy: 0.865; p < 0.001) than the unimodal 
EEG (SVM; accuracy: 0.571) and NF (RF; accuracy: 0.850) models. 
However, in terms of AUD and HCs, the RF model with the unimodal NF 
set was more accurate (accuracy: 0.887; p < 0.001) than the unimodal 
EEG (RF; accuracy: 0.669) and multimodal model (SVM, RF, and LR; 
accuracy: 0.863). 

3.3. Features to distinguish between IGD and AUD 

The importance of features, as indicated by the estimated beta co-
efficients for the LR model (the best-performing model), is shown in 
Fig. 2. Among source-level EEG features, the LR model showed that 
individuals with IGD exhibited that decreased delta connectivity 

between the right OFC and the right AG&IPL in the DMN. In addition, 
increased beta connectivity in the IGD group was observed between the 
right PFC and the right TL in the RSN. Moreover, increased delta con-
nectivity was found between the right TL and the right PCC&Cnu. 
However, the beta connectivity between the right PFC and the right ACC 
was reduced compared to the AUD group. Distinctly, source-level FC 
only showed a group difference in the right interhemispheric region. 
Regarding sensor-level EEG features, the increased absolute delta power 
of the parietal (Pz) region was selected in the IGD group only in the LR 
model. The beta coherence between the right parietal (P4) and right 
temporal (T6) regions, as well as the gamma coherence between frontal 
(Fz) and right central (C4) regions, were higher in the IGD group than in 
the AUD group. Conversely, delta and alpha coherence between right 

Table 2 
Differences in neuropsychological features among individuals with internet gaming disorder, individuals with alcohol use disorder, and healthy controls.  

Features IGD 
(n = 67) 

AUD 
(n = 58) 

HC 
(n = 66) 

x2 p Post hoc. η2
p 

n n n 

Males / Females 63 / 4 46 / 12 56 / 10 5.931 0.052    

Mean (S. D) Mean (S. D) Mean (S. D) F p   

Age 23.881 (5.401) 28.241 (5.417) 24.939 (3.229) 13.881*** <0.001 IGD, HC < AUD 0.129 
IAT 64.672 (15.828) 32.988 (10.911) 29.766 (9.978) 154.099*** <0.001 AUD, HC < IGD 0.621 
AUDIT 5.660 (4.799) 25.491 (7.201) 4.943 (3.403) 296.191*** <0.001 IGD, HC < AUD 0.759 
BDI 19.737 (11.398) 22.047 (15.157) 4.263 (4.396) 49.166*** <0.001 HC < IGD, AUD 0.343 
BAI 15.830 (13.184) 20.090 (14.538) 5.040 (5.458) 28.082*** <0.001 HC < IGD, AUD 0.230 
BIS-11 68.632 (11.060) 69.443 (11.673) 55.460 (8.269) 36.838*** <0.001 HC < IGD, AUD 0.282 
IQ 108.065 (13.947) 105.197 (12.253) 117.364 (11.790) 15.864*** <0.001 IGD, AUD < HC 0.144 

Note. IGD, internet gaming disorder; AUD, alcohol use disorder; HC, healthy control; η2
p , partial eta squared; S. D, standard deviation; IAT, Young Internet Addiction 

Test; AUDIT, Alcohol Use Disorders Identification Test; BDI, Beck Depression Inventory-2; BAI, Beck Anxiety Inventory; BIS-11, Barratt Impulsivity Scale (version 11); 
IQ, intelligence quotient; ***p < 0.001 (Bonferroni-corrected, p < 0.0167).  

Table 3 
Model performances for the test set according to leave-one-out cross-validation.  

IGD versus AUD  

EEG NFs EEG + NFs  

Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. 

SVM 0.560 0.687 0.414 0.648 0.731 0.552 0.608 0.687 0.517 
RF 0.600 0.716 0.448 0.616 0.627 0.552 0.624 0.701 0.534 
LR 0.672 0.672 0.672 0.656 0.731 0.569 0.712 0.746 0.672 

Best model / feature set p-value 
LR / multimodal (EEG + NFs) < 0.001 

IGD versus HC  

EEG NFs EEG + NFs  

Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. 

SVM 0.571 0.537 0.636 0.850 0.791 0.909 0.850 0.791 0.909 
RF 0.481 0.448 0.591 0.850 0.806 0.879 0.865 0.821 0.924 
LR 0.518 0.418 0.621 0.850 0.806 0.894 0.850 0.806 0.894 

Best model / feature set p-value 
RF / multimodal (EEG + NFs) < 0.001 

AUD versus HC  

EEG NFs EEG + NFs  

Acc. Sens. Spec. Acc. Sens. Spec. Acc. Sens. Spec. 

SVM 0.589 0.379 0.773 0.863 0.828 0.894 0.863 0.793 0.924 
RF 0.669 0.517 0.742 0.887 0.862 0.924 0.863 0.810 0.894 
LR 0.581 0.569 0.591 0.863 0.828 0.894 0.863 0.845 0.879 

Best model / feature set p-value 
RF / unimodal (NF) < 0.001 

Note. IGD, Internet gaming disorder; AUD, alcohol use disorder; EEG, electroencephalography; NFs, neuropsychological features; Acc, accuracy; Sens, sensitivity; Spec, 
specificity; HC, healthy controls; SVM, L1-norm support vector machine; RF, random forest; LR, L1-norm logistic regression; P-value was computed with a permutation 
test with 1000 iterations. 
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prefrontal (Fp2) and central (Cz) regions was lower in the IGD group 
compared to the AUD group. 

Among the NFs, sex, age, IQ, and BAI were selected by the LR model; 
sex and age were the highest important features. Lastly, based on the 
“trained deviances” for the classification of IGD and AUD, the EEG 
feature set had an average weight of 0.486 ± 0.008 (SVM: 0.482 ±
0.005; LR: 0.492 ± 0.008; RF: 0.482 ± 0.006). The detailed features of 
each model, the weights for the EEG feature set, and details regarding 
model performance in distinguishing AUD from HCs, as well as IGD from 
HCs, can be found in the Supplementary Material. 

4. Discussion 

The present study investigated the neurophysiological and neuro-
psychological similarities and differences among individuals with IGD, 
individuals with AUD and HCs using ML techniques. Consistent with our 
hypothesis, the findings revealed that the model with the multimodal 
(EEG + NF) feature set performed better in distinguishing IGD from 
AUD, and IGD from HCs than the other models. For AUD individuals and 
HCs, however, the model using the unimodal NF set performed better 
than the other models. 

The LR model with the multimodal feature set distinguished IGD 
from AUD more accurately than the other models. With regard to 
important source-level EEG features, compared to individuals with AUD, 

Fig. 2. Feature importance according to beta coefficients: comparison between internet gaming disorder (IGD) and alcohol use disorder (AUD). Features were 
selected by L1-norm logistic regression (LR). (A) and (B) The highest feature importance of NF and EEG features. (C) Weights of the EEG feature set used for the cross- 
validation deviance-weighted probabilistic ensemble between EEG and NF features. (D) Source-level features are represented on brain surface maps. The red color 
represents increased brain activity of IGD, whereas the blue color represents decreased brain activity of IGD compared to AUD. (E) Sensor-level features (absolute 
power, relative power, and coherence) are represented on scalp topographic maps. In addition, diagonal and circle patterns indicate absolute and relative power, 
respectively. BAI, Beck Anxiety Inventory; IQ, Intelligence Quotient; BIS-11, Barratt Impulsivity Scale version 11 total score; ConNetwork (node 1-node 2, and fre-
quency), connectivity between node 1 and node 2 for the frequency band; Coh (sensor 1-sensor 2, and frequency): coherence between sensor 1 and sensor 2 for the 
frequency band; Ptype (sensor and frequency): power type of the sensor for the frequency band; OFCR: right orbital frontal cortex; TLR: right temporal lobe; 
PCC&CnuR: right posterior cingulate cortex and cuneus; AG&IPLR: right angular gyrus and inferior parietal lobe; PFCR: right pre-frontal cortex; ACCR: right anterior 
cingulate cortex. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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those with IGD had lower delta FC between the right OFC and the right 
AG&IPL, lower beta FC between the right PFC and the right ACC, higher 
delta FC between the right TL and the right PCC&Cnu, and higher beta 
FC between the right PFC and the right TL. These results disagree with 
those related to the differentiation of IGD and HCs, which relied on 
alpha and gamma source FC, and those related to the differentiation of 
AUC and HC, which relied on delta source FC. The findings indicate that 
individuals with addiction may struggle to process rewards and are more 
likely to suffer from reduced cognitive abilities. Our previous study 
showed that individuals with IGD have increased theta, alpha, and beta 
FC within the DMN between the OFC and parietal regions, and increased 
alpha and beta FC within RSN between the ACC and TL within the RSN, 
compared to HCs. The altered FC patterns potentially reflect the 
dysfunction of cognitive and reward-related processes [23]. A previous 
ML study revealed increased FC within the DMN between the para-
hippocampal and other regions in patients with AUD. These finding 
suggest the presence of neural hyperexcitability and compensatory 
mechanisms [21]. Huang et al. [62] suggested that altered beta and 
theta EEG source-level FC in patients with AUD was related to deficiency 
in suppressing substance-related craving, described as the “unified 
percept of incentive salience related to reward”. Consequently, altered 
delta and beta FC within the DMN and RSN between individuals with 
IGD and AUD may be linked to their impaired reward processing and or 
cognitive function. 

The present model emphasized the important of source-level FC 
within the right hemisphere, although the highest feature importance 
regions differed by addiction type. Patients with IGD showed increased 
FC in the PCC&Cnu, PFC, and TL, whereas those with AUD showed 
increased FC in the OFC, PFC, ACC, and AG&IPL. These findings 
disagree with those of a previous study [23]. In this study, to distinguish 
the IGD and HC, greater left or interhemispheric source FC across theta, 
alpha, beta, and gamma frequency bands was more important. Other 
studies have emphasized the involvement of the right hemisphere in 
both addiction types [63,64]. Therefore, changes in delta and beta 
source-level FC within the right hemisphere can serve as distinct 
neurophysiological indicators for differentiating between BA and SUD. 
Additional research is needed to compare the potential hemispheric and 
regional effects between the two addiction types. 

Our LR model identified several important sensor-level EEG features. 
Previous studies have revealed that patients with AUD have increased 
delta absolute power, reduced theta absolute power, and increased 
intrahemispheric theta coherence [14,15,33]. Lower delta and beta 
absolute power, higher gamma absolute power, and higher intrahemi-
spheric gamma coherence have been linked to IGD [65]. While the 
application of sensor-level EEG features is limited by technical issues, 
these features can still play a crucial role in classifying both addiction 
types and distinguishing such individuals from HCs. Therefore, the 
integration of sensor- and source-level EEG activities is useful for diag-
nosis. Furthermore, this approach can enhance our understanding or 
underlying neurophysiological mechanisms and facilitate the identifi-
cation of addictive disorders using ML techniques. 

Among the NFs in this study, age and sex had a significant impact on 
model performance, whereas depression, anxiety, impulsivity, and IQ 
played relatively minor roles. Patients with IGD and AUD may share 
certain psychological symptoms. Previous study indicated that they had 
similar emotional, temperamental, and personality features [66]. Indi-
vidual with IGD also show similar levels of impulsivity to those with 
AUD and gambling disorder [11]. In summary, our ML model suggest 
that IGD and AUD share certain neuropsychological characteristics, 
despite differences in underlying neuropsychological mechanisms. 
Evaluating neurophysiological mechanisms is a crucial for the treatment 
and intervention of both BA and SUD. 

Our multimodal model was more accurate in identifying IGD than 
the models using unimodal feature sets. The multimodal approach can 
help clinicians diagnose patients with IGD by incorporating both sub-
jective neuropsychological (self-report) and objective 

neurophysiological (EEG) data. Hence, our ML model will only enhance 
our understanding of the neural basis of IGD and could also improve 
diagnostic accuracy for IGD. To further improve model performance, it 
is essential to incorporate a variety of ML and deep learning algorithms. 
On the other hands, the RF model with the unimodal NF set showed 
better performance in classifying AUD and HCs compared to the other 
models. The role of age is significant in assessing brain impairments in 
individuals with AUD. A review study suggested that the aging brain has 
a greater susceptibility to alcohol-related damage compared to the 
impact of alcohol consumed throughout one's lifetime [67]. Addition-
ally, younger individuals exhibit significantly better brain recovery 
ability during prolonged abstinence. In our research, we found that 
participants with AUD were under 30 years old, suggesting that younger 
brains may experience less damage from alcohol and have a greater 
chance of recovery compared to older adults with AUD. As such, their 
intense NFs may have a stronger effect on model performance with 
respect to AUD and HC classification compared to other features. Thus, 
conducting additional research with larger participant groups that 
include older individuals is necessary to clarify the influence of age. 

The present study had several limitations. First, the generalizability 
of our findings is limited due to the small sample size, which is insuffi-
cient to represent the entire population of individuals with both IGD and 
AUD. Therefore, further studies with larger sample sizes are required. 
Second, the causal effects of medication and comorbidities were not 
evaluated. Third, the limited results of source connectivity were due to 
the analysis being conducted with only 19 channels extracted from a 
total of 64 channels. We cannot entirely eliminate bias due to the in-
clusion of a small number of channels, such as those associated with 
mislocalization and/or blurring. In a previous study, it was found that 
utilizing swLORETA with specific techniques produces comparable 
levels of accuracy in localizing the lead field using both 19 and 128 EEG 
channels, similar to magnetoencephalography [45]. However, further 
studies using a large number of channels are needed. Finally, the study 
was based on cross-sectional data, and the models were not validated 
prospectively. 

5. Conclusions 

Despite its limitations, this study is the first to use ML methods in 
distinguishing among patients with IGD, patients with AUD, and HCs. 
The study utilizes multimodal feature sets, including sensor- and source- 
level EEG and NFs. In particular, the changes in delta and beta source- 
level FC within the right hemisphere can serve as a neurophysiological 
indicator for distinguishing between IGD and AUD. Notably, individuals 
with IGD and AUD have similar neuropsychological symptoms despite 
their dissociable neurophysiological mechanisms. Furthermore, the 
multimodal ML model for distinguishing IGD from HCs emphasizes the 
potential utility of ML models for diagnosing IGD. EEG offers unique 
advantages over other neuroimaging modalities, including lower costs, 
mobility, and ease of use. This makes it particularly suitable for diag-
nosis purposes, neurofeedback therapy, as well as non-invasive brain 
stimulation. Continued investigation of these findings could enhance 
diagnostic precision and therapeutic approaches for individuals with 
both IGD and AUD. Overall, the findings enhance the value of ML 
techniques in identifying IGD through neurophysiological and neuro-
psychological patterns, distinguishing it from AUD and advancing our 
understanding of both as IGD (a BA) and AUD (a SUD). 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.comppsych.2024.152460. 
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