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Steingroever, Wetzels, and Wagenmakers (2014) conducted a detailed investigation of
3 popular reinforcement-learning models for the Iowa gambling task using 2 model
comparison techniques: a post hoc fit criterion and a simulation method. However,
these 2 methods yield inconsistent results regarding which model should be preferred
as a description of underlying psychological processes. Here, we describe the benefits
of each method in an attempt to develop a more balanced view of how to utilize these
model comparison techniques, and we outline the risks of focusing on a single method
to make inferences about the overall utility of a model. Also, we make several
suggestions about how applied research should evaluate candidate cognitive models,
and we offer guidelines for future research aimed at identifying “good” models for
decomposing and explaining participants’ performance.
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One of the most popular and frequently used
paradigms in experience-based decision-
making is the Iowa gambling task (IGT;
Bechara, Damasio, Damasio, & Anderson,
1994), which has become a test case for the
development of learning models, as well as a
standard screening tool for decision-making
deficits in clinical populations. In this issue,
Steingroever, Wetzels, and Wagenmakers

(SWW, 2014) placed three reinforcement-
learning (RL) models (Sutton & Barto, 1998)
for the IGT under careful scrutiny: the Expec-
tancy Valence-Learning (EVL; Busemeyer &
Stout, 2002), the Prospect Valence-Learning
(PVL; Ahn, Busemeyer, Wagenmakers, &
Stout, 2008; Ahn, Krawitz, Kim, Busemeyer, &
Brown, 2011), and the PVL-Delta (Ahn et al.,
2008; Fridberg et al., 2010) models. Each of
these models consists of different assumptions
relating to the formation of utilities, the learning
or updating of the expectancies of each deck,
and the tradeoff between exploration and ex-
ploitation. The focus of SWW’s examination is
centered around two major points: first, which
of these models should be preferred in order to
isolate and identify the psychological processes
that drive performance on the IGT, and second,
which method should be used to select the best
model.

Selection of the best-performing model gen-
erally involves sophisticated model comparison
techniques that assess each model’s ability to
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reproduce the observed behavioral patterns and
explain fundamental aspects of decision-
making. Two methods are commonly used: a
post hoc fit criterion (or one-step-ahead predic-
tions) and a simulation method. However, as
shown by SWW (see also Ahn et al., 2008;
Yechiam & Busemeyer, 2008; Yechiam & Ert,
2007), these two methods yield inconsistent re-
sults as to which model should be preferred, a
finding considered by SWW to indicate failure
of at least one of the model comparison tech-
niques (that is, one technique is better than the
other—or more indicative—at disentangling
the psychological processes that drive perfor-
mance on the IGT). Following this, SWW argue
that models’ performance should be assessed
using both methods (models have to pass a
minimum threshold of adequacy under both
methods), but the simulation method provides a
better assessment of the underlying psycholog-
ical processes because it is the only method that
bases its predictions on newly generated payoff
schedules and choices and thus reflects what
participants would have done under novel con-
ditions (i.e., new payoff sequences). They argue
that the post hoc fit criterion is inferior in that it
may only be able to reproduce the observed
behavioral pattern by mimicking participants’
previous choices, indicating that the estimated
parameters may be biased by factors that do not
invite a clear psychological interpretation.

In this comment, we argue against the idea
that the inconsistency of model comparison
methods is a failure. Instead, as we outline, such
inconsistency in the results should be expected
given the difference in approach of these two
methods, a point also made by SWW: The post
hoc fit criterion uses participants’ previous his-
tory of choices and experienced payoffs to make
predictions about subsequent trials, whereas the
simulation method relies on the generation of
new histories for choices and payoffs. Second,
while we agree that the simulation method is
important, we argue that the post hoc fit crite-
rion also has value in that its parameters are
meaningful and provide useful psychological
insight.

In the remainder of the commentary, we
outline and present theoretical and practical ar-
guments for why relying solely on simulation
performance in an experience-based decision-
making setting may lead to misleading conclu-
sions, and we highlight valuable aspects of the

post hoc criterion method. By articulating the
benefits of each approach, we offer a more
balanced view of how to utilize these model
comparison methods to yield the richest inter-
pretations of behavior.

Sequential Dependencies

The main objective of RL models of the IGT
is to account for how future decisions are
shaped by the experienced history of previous
decisions and their associated payoffs. This is
how learning occurs, and these models are eval-
uated on how well they capture learning effects
throughout an individual’s observed choice his-
tory. In other words, these models try to account
for the sequential dependencies between each
current choice and the previous choices and
payoffs. In fact, all three models under consid-
eration share the assumption that the depen-
dence of a current choice on previous choices is
fully mediated by the payoffs (and not the past
choices) experienced as a consequence of these
previous choices. Thus, to predict a future
choice, one only needs to consider the history of
experienced payoffs.

In the simulation method employed by
SWW, random draws from a posterior distribu-
tion over parameters, conditional upon observed
choices and payoffs, are used to simulate a set
of new choice and payoff sequences. Model
selection is then based on the match between the
marginal probabilities of the artificial choices in
this simulated set and the proportions of ob-
served choices. Our view, however, is that by
marginalizing over the simulated payoff se-
quences and focusing only on the choice prob-
abilities, the method ignores the fundamental
objective of RL models, which is to account for
sequential dependencies between choices (i.e.,
how choices are shaped by experience). Fur-
thermore, by considering the ability to repro-
duce (postdict) marginal probabilities in the
same dataset as used for model estimation, the
simulation method employed by SWW can fa-
vor models that are unlikely to generalize to
new datasets. For example, consider a model with
one parameter, which identifies a sequence of
choices within the set of all possible choice se-
quences. The model predicts that a choice se-
quence displayed by a participant will be identical
to the sequence identified by the parameter val-
ue. While, for a standard IGT with 100 trials
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and 4 choice alternatives, the parameter has 4100

possible values, estimation is easy once a par-
ticipant’s complete choice sequence is known.
Because the model is not stochastic, it will
reproduce, for each participant, their choice se-
quence exactly, regardless of the payoff se-
quence generated in the simulations. Averaging
over participants, such simulations will per-
fectly reproduce the observed choice probabili-
ties. Nevertheless, most people will agree that
this is not an overly useful model: It predicts
that people make exactly the same choices when
performing the task another time and it can only
postdict choices, not predict subsequent choices
from the previous history. Because of this in-
ability to make one-step-ahead predictions, the
post hoc fit method, unlike a simulation method
that estimates a model and evaluates simulation
performance with the same data, will clearly
disfavor this hypothetical model.

For now, the claim that the simulation
method offers a more useful method of model
discrimination than the post hoc fit method
seems at least premature.

Individual Differences and Research
Applied to Clinical Populations

The IGT has been used extensively as a neu-
ropsychological test to assess decision-making
in clinical populations (for a review, see, e.g.,
Bechara & Damasio, 2005; Dunn, Dalgleish, &
Lawrence, 2006). Thus, it is of great importance
to present a model that can offer informative
conclusions regarding individual differences in
the underlying psychological processes. This
can enable researchers to identify key differ-
ences between clinical groups and healthy con-
trols and make strong connections between neu-
rophysiology and behavior, leading to a better
characterization of the psychological symptoms
of the disorder under test (Stout, Busemeyer,
Lin, Grant, & Bonson, 2004; Yechiam, Buse-
meyer, Stout, & Bechara, 2005). A serious
drawback of the simulation method that SWW
employed is that it evaluates the average model
prediction and ignores the fact that different
models are required to fit different individuals.

A fundamental goal of clinical research is to
establish an explanatory framework for partic-
ular clinical groups, to connect pathological be-
havior to patterns of behavior on clinical and
cognitive experimental tasks, and to map these

deficits to neurophysiological mechanisms.
Computational models serve as the intermediate
step between the brain and observed behavior
where performance on a task can be decom-
posed into its constituent cognitive processes
and mapped to neural mechanisms (Busemeyer,
Stout, & Finn, in press). In this regard, model
comparison should also be informed by psycho-
logical measures from relevant clinical assess-
ments, which will facilitate the selection of the
best models. In other words, a good model will
not only perform well on a quantitative statisti-
cal index (e.g., goodness of fit) but will also
provide explanations and make connections to
findings or observations from the existing liter-
ature and to validated characteristics of a par-
ticular clinical sample. For example, if the
model parameters are correlated with clinically
relevant characteristics derived from psycho-
metric scales and personality questionnaires,
then the model can serve as a good representa-
tion of the underlying psychological processes.
Also, another criterion to assess model perfor-
mance is individual parameter consistency
(SWW also propose the use of this analysis);
that is, comparison of correlations of model
parameters estimated from the same individual
in more than one task. This is an important step
toward the identification of “stable” internal
characteristics that drive performance on differ-
ent tasks and can be used as an extra assessment
of model performance (Yechiam & Busemeyer,
2008). This stability of the internal characteris-
tics driving individual performance across
somewhat disparate tasks helps to reinforce psy-
chological explanations regarding underlying
pathology in individuals.

Generalization, Biases, and Inertia

One of the most fundamental properties of a
good model is its ability “to make predictions
about what will be observed in the future or
generalizations about what would be observed
under altered circumstances” (Shiffrin, Lee,
Kim, & Wagenmakers, 2008, p. 1249). Similar
views have been expressed by other researchers
who have discussed the importance of general-
ization in identifying a good candidate model
and have introduced methods to assess a mo-
del’s generalizability, such as the minimum de-
scription length (Pitt, Kim, & Myung, 2003;
Pitt, Myung, & Zhang, 2002) and the general-
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ization criterion (Busemeyer & Wang, 2000). If
an (estimated) model is to reliably predict be-
havior in new settings, it should apply indepen-
dently of task-specific effects, biases that may
arise from the experimental setup, and idiosyn-
cratic strategies or heuristics individuals may
adopt to deal with uncertainty. In experience-
based tasks there are two sources of information
that drive participants’ choices: frequency of
past choices from different options and payoffs
experienced from sampling each of these op-
tions (Yechiam & Ert, 2007). According to
SWW, a bias-free model (one that generalizes
efficiently) has to base its predictions only on
past payoffs. We note that this is logical be-
cause the parameters of the RL models under
investigation measure underlying psychological
processes related to how participants respond to
the payoffs they experience. However, we argue
that the goal of predicting behavior in different
contexts is not well served by simulation meth-
ods.

Adding to this argument, Erev and Haruvy
(2005) distinguish between two types of predic-
tions in descriptive learning models: first, pre-
dictions for a task that are based on the inter-
action of a participant with that same task
(within-game predictions), and second, predic-
tions for different tasks with which participants
are unfamiliar (new-game predictions). Follow-
ing this distinction, the post hoc fit criterion is a
within-game prediction, whereas the simulation
method can be seen as a new-game prediction.
SWW argue that the simulation performance of
a model should be of greater importance when
our goal is to find the best model or assess the
psychological processes underlying perfor-
mance on the IGT. While we argue that simu-
lation is indeed an important comparison tech-
nique, we present arguments why (a) simulation
is a crude generalization test, which (b) may not
reflect stable psychological processes.

Not a Direct Generalization Test

SWW suggest that the simulation method
provides a good test of generalizability because
it assesses models’ predictions under new pay-
off sequences that participants have not encoun-
tered. To make these new predictions, the sim-
ulation method uses the best-fitting parameters
from one-step-ahead predictions (post hoc fit
criterion).1 Two possible problems may arise

from the application of the simulation method:
first, the use of parameters that optimize one-
step-ahead predictions to predict new unob-
served choice sequences (new-game predic-
tions) might be far from ideal because these
parameters carry information about partici-
pants’ history of experience with the task and
serial dependencies. In other words, the use of
parameters estimated with the post hoc fit
method could result in a considerable underes-
timation of a model’s simulation performance.
Future research can examine the benefits of the
simulation method (i.e., model predictions un-
der novel conditions/payoff sequences) by us-
ing simulated participants to estimate the model
parameters at an individual or aggregate level (a
common practice in other experience-based
tasks, see Erev & Barron, 2005; Gonzalez &
Dutt, 2011). Then, these parameters can be
compared with those from the one-step-ahead
method (and the model predictions of each
method) in order to provide better inferences
regarding the level of generalizability and util-
ity of each model.

The second point is related to model com-
plexity, a model’s capacity to fit different pat-
terns of data (Pitt & Myung, 2002). Complexity
is dependent on two different factors that affect
model fit: the free parameters of the model and
its functional form; that is, how the parameters
and the mathematical equations are combined
(Myung, 2000). Complexity is a very important
concept in model comparison and is related to
the generalizability of the model. SWW argue
that the simulation method should be preferred
over the post hoc fit criterion because it leads to
a better assessment of generalizability, but it
does not take into account either of the two
factors described earlier. For example, the EVL
model has 3 free parameters, whereas the PVL
and the PVL-Delta have 4. Even though the
differences in simulation performance between
the PVL and PVL-Delta models cannot be as-
cribed to differences in the number of parame-
ters or their functional form (there are qualita-
tive differences in the patterns of choices that
the two models predict), it could be the case that
more (or less) complex models can be applied to

1 SWW used Hierarchical Bayesian estimation for the
model parameters, which also accounts for the uncertainty
in the parameter estimates.
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IGT data (see, e.g., the Value-Plus-Persevera-
tion model; Worthy, Pang, & Byrne, 2013).

The question is how does one deal with com-
plexity in model comparison? While there are a
few techniques to capture complexity (see Pitt
et al., 2002), we propose the use of the gener-
alization criterion (GC) method (Busemeyer &
Wang, 2000). The reason is that the GC is a
better and more sophisticated modification of
the cross-validation method and is sensitive to
both factors of complexity (Pitt & Myung,
2002). Also, it has already been applied for
model comparison in experience-based tasks
(see Ahn et al., 2008; Yechiam & Busemeyer,
2008).2 A critical difference between the GC
and the simulation method is that the former
uses the participants’ actual choice and payoff
histories (i.e., there is intermediate feedback
from participants’ choices), whereas the latter
takes no input from what participants have ac-
tually selected and observed. Hence, when we
assess model generalizability, the GC is a more
appropriate method because it deals with the
concept of model complexity and also takes into
account how participant’s future choices are
dependent on their actual choice and payoff
histories.

Updating of Expectancies, Choice Mimicry,
and Inertia

One pronounced difference among the mod-
els that SWW examined relates to the updating
of each deck’s expectancy. The EVL and PVL-
Delta models make use of the delta rule whereas
the PVL uses a decay rule (Erev & Roth, 1998)
to update the expectancies. In the case of the
delta learning rule, only the expectancy of the
selected alternative on each trial is updated
while the expectancies of the unchosen alterna-
tives remain as they were. Under the decay RI
rule, the expectancy of each alternative changes
as a function of the time and frequency of
selections.

Yechiam and Ert (2007) evaluated the reli-
ance of each learning rule on the past choices
that each individual had made. The learning rule
that relies least on past choices should yield a
better measure of the payoff-related variables
and thus be able to provide better predictions in
new situations. Yechiam and Ert showed that
when information about the payoffs is elimi-
nated, (i.e., each alternative/option yields the

exact same payoff—equal payoff series extrac-
tion method; EPSE) the decay RI rule was su-
perior to the delta rule under the post hoc cri-
terion method, indicating its ability to base its
predictions on participants’ choice history. Us-
ing the same technique, Konstantinidis, Buse-
meyer, Speekenbrink, and Shanks (2014) show
that the model that has the worst performance
under the EPSE method (PVL-Delta) is the best
model under the simulation method.

One reasonable question following the previ-
ous demonstration is whether the decay RI rule
of the PVL model can capture stable psycho-
logical characteristics of each individual or just
favors the selection of the decks that have been
most frequently sampled. SWW suggest that
choice mimicry is an undesirable characteristic
of a model because it does not convey mean-
ingful information about the psychological ele-
ments that drive performance on the task. When
information about individuals’ actual choices is
removed (through the simulation method), then
the decay RI rule does not predict the observed
choice patterns as accurately as the delta rule.

However, choice inertia is a well-docu-
mented tendency in these kinds of tasks (Erev &
Haruvy, 2005) according to which people show
a propensity to repeat their last selections irre-
spective of the received payoffs and conse-
quently of the expected value of each option/
deck. Inertia is a manifestation of risk-taking
behavior (Dutt & Gonzalez, 2012), and it has
been implemented in various cognitive models
of experience-based decision making (e.g.,
Biele, Erev, & Ert, 2009; Gonzalez & Dutt,
2011; Nevo & Erev, 2012). The application of

2 The application of the criterion is straightforward: there
are two experimental conditions or datasets. The first serves
as the calibration set and the second as the test set. A model
is fitted on the calibration set, and the estimated parameters
are used to predict the data in the test set. Finally, the
predictions of each of the candidate models in the test set
are compared to assess the empirical validity of these mod-
els. Ahn et al. (2008) used the GC to evaluate different RL
models in the context of experience-based decision-making.
Specifically, the same group of participants completed two
tasks, the IGT and the Soochow gambling task (SGT; Chiu
et al., 2008), and the models were compared on their ability
to predict one task’s choices based on the estimated param-
eters of the other task. Using the GC, Ahn et al. found that
the same pattern of results emerged as in the one-step-ahead
prediction method; that is, the PVL model with the decay RI
rule was the best-performing model (but see Yechiam &
Busemeyer, 2008).
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inertia can enhance the utility of cognitive mod-
els by making them more ecologically valid
(Dutt & Gonzalez, 2012) and can improve pre-
dictions of serial dependencies in people’s de-
cisions (Erev & Haruvy, 2005).

Concluding Remarks

Selection among competing cognitive models
is a core challenge for understanding cognitive
processing. SWW attempted to tackle this issue
in one of the most frequently used decision-
making paradigms by using two methods: a post
hoc fit criterion and a simulation method. While
we agree that model selection should not be
based only on the merits of model fit (post hoc
fit criterion), the suggestion that the simulation
method is more informative about whether a
model captures the underlying psychological
processes is problematic, for the reasons we
have outlined. From a formal-technical perspec-
tive, the simulation method cannot provide a
strong test of generalization (a point also hinted
at by SWW), nor does it assess model complex-
ity. According to Pitt et al. (2002) “only by
taking complexity into account can a selection
method accurately measure a model’s general-
izability” (p. 474). In this regard, we suggest
that future evaluations of model performance
and generalizability should employ measures
that deal directly with model complexity, such
as the GC. Second, the best model under the
simulation method may not provide an adequate
description of the stable psychological charac-
teristics of each individual. Rather, the esti-
mated parameters from one-step-ahead predic-
tions may carry over artifacts generated from
the experimental design. For this reason, even
parameter consistency techniques might fail to
provide an accurate answer if the parameters
have been estimated on incorrect a priori as-
sumptions about the mechanisms of the cogni-
tive process under investigation.

These problems lead us to reconsider
whether the existing models are able to cap-
ture the most fundamental aspects of experi-
ence-based decision-making. One suggestion
would be to extend the RL models in order to
account for effects such as inertia and perse-
veration. Even though the decay RI rule
makes no explicit assumptions about inertia,
the steady decrease in value expectations of
the unselected options favors the selection

of the option that has been selected more
often. One problem with the decay RI rule is
that inertia is confounded with the expectancy
of each option. Because both of these dimen-
sions are represented by a single numerical
value, it is very difficult to ascertain which of
these tendencies is responsible for a model’s
predictions (Worthy et al., 2013). The VPP
model by Worthy et al. (2013) seems a step in
the right direction (because it explicitly incor-
porates inertia), although it has to be tested
further before making any strong conclusions
about its overall utility. Specifically, the VPP
model has 8 parameters, which may be too
much given the small numbers of trials in the
IGT (usually 100). Moreover, the behavioral
pattern from experimental tasks may not be
sufficient to extract all the relevant informa-
tion regarding the underlying psychological
processes. A careful examination and com-
parison of the model parameters with estab-
lished psychometric measures and personality
scales would reveal the extent to which the
model captures observed behavior and the
validity of its assumptions.

To summarize, SWW’s attempt at a rigor-
ous examination of RL models in the IGT can
be seen as the starting point of a more careful
investigation of model performance. How-
ever, the results and conclusions from their
analyses are premature for establishing and
identifying one single model based on which
applied research should assess decision-
making. In this comment, we highlighted the
drawbacks of focusing on a single method,
and we offered suggestions about how future
research should tackle the most challenging
issue of model selection in experience-based
decision-making. Specifically, for assess-
ments of generalizability, we suggested the
use of the GC, individual parameter consis-
tency, and parameter estimation using simu-
lated participants; for psychological interpre-
tation of model predictions, we proposed a
direct comparison between the estimated pa-
rameters and measurements from psycholog-
ical scales and questionnaires; finally, a better
assessment of each model’s basic properties
is needed using model and parameter recov-
ery techniques (e.g., Wagenmakers, Ratcliff,
Gomez, & Iverson, 2004; Wetzels, Vandeker-
ckhove, Tuerlinckx, & Wagenmakers, 2010)
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and tests of specific influence (e.g., Steingro-
ever, Wetzels, & Wagenmakers, 2013).
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