
 1 

Learning from the Reliability Paradox: How Theoretically Informed Generative Models 

Can Advance the Social, Behavioral, and Brain Sciences    

 

Nathaniel Haines* 

The Ohio State University, Department of Psychology, 
1835 Neil Ave., Columbus, OH., 43210  

Email: haines.175@osu.edu; Website: http://haines-lab.com/ 
 

Peter D. Kvam 

University of Florida, Department of Psychology, 
945 Center Dr, Gainesville, FL, 32611 

Email: pkvam@ufl.edu; Website: https://peterkvam.com/ 
 

Louis Irving 
University of Florida, Department of Psychology, 

945 Center Dr, Gainesville, FL, 32611  
Email: louis.irving@ufl.edu; Website: https://theapclab.wordpress.com/people/ 

 

Colin Tucker Smith 

University of Florida, Department of Psychology, 
945 Center Dr, Gainesville, FL, 32611  

Email: colinsmith@ufl.edu; Website: https://theapclab.wordpress.com/ 
 

Theodore P. Beauchaine 

The Ohio State University, Department of Psychology, 
1835 Neil Ave., Columbus, OH., 43210  

Email: beauchaine.1@osu.edu; Website: https://tpb.psy.ohio-state.edu/LAP/people.html 
 

Mark A. Pitt 

The Ohio State University, Department of Psychology, 
1835 Neil Ave., Columbus, OH., 43210  

Email: pitt.2@osu.edu; Website: https://u.osu.edu/markpitt/ 
 

Woo-Young Ahn 

Seoul National University, Department of Psychology, 
1 Gwanak-ro, Gwanak-gu, Seoul, South Korea  

Email: wahn55@snu.ac.kr; Website: https://ccs-lab.github.io/ 
 

Brandon M. Turner* 

The Ohio State University, Department of Psychology, 
1835 Neil Ave., Columbus, OH., 43210 

Email: turner.826@gmail.com; Website: https://turner-mbcn.com/ 

 

*Co-corresponding authors 

 

Word counts: Abstract 249; main text 13,814; references 3,334; entire text: 17,397.  



 2 

Abstract: Short 

The reliability paradox implies that popular statistical modeling tools (general linear model) are 

not well-suited for advancing theories of individual differences. Such tools only provide 

superficial summary descriptions of observed data, and by extension they are atheoretical with 

respect to the psychological mechanisms that generate behavior. Further, they lack the flexibility 

needed to develop and test increasingly complex theories of behavior. We argue that generative 

modeling fills this theory-description gap, and demonstrate its superiority in a reanalysis of data. 

Generative models produce higher test-retest reliability and more theoretically informative 

parameter estimates than do traditional methods.
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Abstract: Long 

Behavioral tasks (e.g., Stroop task) that produce replicable group-level effects (e.g., Stroop 

effect) often fail to reliably capture individual differences between participants (e.g., low test-

retest reliability). This “reliability paradox” has led many researchers to conclude that most 

behavioral tasks cannot be used to develop and advance theories of individual differences. 

However, these conclusions are derived from statistical models that provide only superficial 

summary descriptions of behavioral data, thereby ignoring theoretically-relevant data-generating 

mechanisms that underly individual-level behavior. More generally, such descriptive methods 

lack the flexibility to test and develop increasingly complex theories of individual differences. 

To resolve this theory-description gap, we present generative modeling approaches, which 

involve using background knowledge to specify how behavior is generated at the individual 

level, and in turn how the distributions of individual-level mechanisms are characterized at the 

group level—all in a single joint model. Generative modeling shifts our focus away from 

estimating descriptive statistical “effects” toward estimating psychologically meaningful 

parameters, while simultaneously accounting for measurement error that would otherwise 

attenuate individual difference correlations. Using simulations and empirical data from the 

Implicit Association Test and Stroop, Flanker, Posner Cueing, and Delay Discounting tasks, we 

demonstrate how generative models yield (1) higher test-retest reliability estimates, and (2) more 

theoretically informative parameter estimates relative to traditional statistical approaches. Our 

results reclaim optimism regarding the utility of behavioral paradigms for testing and advancing 

theories of individual differences, and emphasize the importance of formally specifying and 

checking model assumptions to reduce theory-description gaps and facilitate principled theory 

development. 
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1. Introduction 

A primary aim of social, behavioral, and brain sciences is to develop explanations that answer 

questions of why or how observed psychological phenomena occur (Hempel & Oppenheim, 

1948). Explanatory theories are indispensable for making valid causal inferences and for 

determining how to successfully intervene on psychological processes. However, developing 

useful yet accurate explanations of complex psychological processes is a serious challenge. 

Explanation requires (a) a theory encoding core causal assumptions about the phenomenon of 

interest, (b) experimental tasks or data sources that capture the key theoretical phenomenon, and 

often (c) statistical models that test theoretical principles against observed data while accounting 

for uncertainty (Guest & Martin, 2020; Kellen, 2019; Suppes, 1966). In the social, behavioral, 

and brain sciences, theories may be specified verbally, conceptually, or (less commonly) 

mathematically. Typically, inference then proceeds using some combination of summary 

statistics (e.g., summed items on a questionnaire, average response times, etc.) and a descriptive 

statistical model as a medium for performing null hypothesis significance testing (Tong, 2019). 

For example, researchers might apply a t-test or multiple regression to summary statistics (e.g., 

means), yielding a p-value that is subsequently interpreted with respect to the substantive theory. 

   

Despite their popularity, summary statistics followed by significance tests may misalign with the 

objectives of explanatory theories. Specifically, when we default to summary statistics when 

analyzing behavioral data, we are assuming that summary statistics adequately capture the 

underlying data-generating mental process of interest. As we will demonstrate, this use of 

summary statistics both restricts theory development and produces suboptimal measurement 

precision, thereby constraining the explanatory power of our theories and the implementation of 
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corresponding models. In other words, the typical approach to explaining psychological 

phenomena using experimental design and hypothesis testing leads to a theory-description gap: 

researchers invest in verbal or conceptual theories to account for new statistical effects (i.e., 

data), but historically invest less in amending their statistical models in ways that best embody 

their theories (e.g., Beauchaine & Hinshaw, 2020; Michell, 2008; Szollosi & Donkin, 2019). For 

example, a typical approach to theory development in the behavioral sciences is to assume a 

verbal theory, make directional predictions based on that theory, design an experiment that can 

produce the predicted effect, and then use a standard statistical model (e.g., t-test, multiple 

regression) and corresponding statistical test to determine if in-sample directional effects can 

plausibly be attributed to the population of interest. The theory-description gap then arises as we 

continue to refine our verbal theories to the point at which they are no longer amenable to simple 

experimental designs, summary statistics, and standard inferential modeling1. Because theories 

evolve in the presence of new data, we argue that statistical models should do the same, thereby 

providing the needed quantitative precision and hypothesized explanation to fill the gap. 

Fortunately, such theory-description gaps can be addressed by explicating assumptions of both 

the descriptive and theoretical models, and by iteratively refining them in a mutually 

constraining fashion (Guest & Martin, 2020; Kellen, 2019; Suppes, 1966).  

 

Iterative approaches to theory development and testing emphasize a shift away from pure 

empiricism and deductive inference and toward more principled abduction of explanatory 

models, along with subsequent model comparison and refinement (Navarro, 2018; van Rooij & 

Baggio, 2020). The key tenet of iterative, abductive inference is that we, as scientists, approach 

 
1 We provide examples of this phenomenon in section 3.2. 
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research questions with substantial background knowledge. Even in the absence of empirical 

data, we can use our background knowledge to instantiate potential explanatory mechanisms 

within competing statistical models, thereby producing explanatory models. In this way, 

background knowledge imposes considerable constraint on statistical inference that is not 

afforded by traditional summary statistic approaches. The role of empirical data is then 

secondary—we use data and experiments to arbitrate among or refine competing explanatory 

models. For example, if a theory predicts that a task manipulation should cause an increase in 

mean response times, there are presumably multiple cognitive mechanisms that could cause such 

an increase. Without building these mechanisms into the statistical model, it is unclear how the 

resulting statistical model estimates relate back to the theory (i.e., a theory-description gap) and, 

consequently, there is risk of misinterpreting even a well-fitting statistical model (see also 

Roberts & Pashler, 2000). By not filling gaps, theories remain abstract and vague, divorced from 

details in the data that require explanation, slowing advancement in the field.  

 

In this article, we introduce generative modeling as a general solution to the theory-description 

gap. As a motivating example, we focus our attention on a current and vexing theory-description 

gap problem: the reliability paradox (Hedge et al., 2017). The reliability paradox, as we discuss 

in section 2, implies that many behavioral paradigms that are otherwise robust at the group-level 

(e.g., those that produce highly replicable condition- or group-wise differences) are unsuited for 

testing and building theories of individual differences due to low test-retest reliability. As we 

will demonstrate, these conclusions are derived from statistical models that do not include our 

background knowledge of behavior that, once built into a generative model, resolves issues of 
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low reliability and reveals the rich individual differences in behavior that can be used to advance 

explanatory theories.    

 

The remainder of this article is organized as follows. First, we discuss the reliability paradox and 

its traditional interpretation as a motivating example. Second, we outline atheoretical 

assumptions researchers often make when analyzing behavioral data (i.e., the theory-description 

gap). These assumptions can lead to inappropriate conclusions about individual differences and 

the apparent reliability paradox. Third, as an alternative, we introduce generative modeling—a 

theoretically driven approach to statistical modeling that involves making explicit assumptions 

about data-generating mechanisms as a tool for filling the gap. We then re-analyze data collected 

from several common tasks used in psychology, neuroscience, and behavioral economics to 

show how generative modeling can improve precision of individual-level inferences from task 

data, thereby filling the theoretical gap. Finally, we discuss implications of our findings and 

provide actionable steps on how researchers can use generative modeling to advance the study of 

human behavior. 

 

2. The Reliability Paradox 

Paradigms such as the Implicit Association Test (IAT: Greenwald et al., 1998) and the Stroop 

(1935), Flanker (Eriksen & Eriksen, 1974), Posner Cueing (Posner, 1980), and Delayed 

Discounting Tasks (Green & Myerson, 2004; Mazur, 1987) consistently produce robust group 

effects using simple behavioral summary statistics and traditional statistical tests. For example, 

the Stroop effect is traditionally quantified as the mean difference in response times between 

incongruent (“red” colored blue) and congruent (“red” colored red) word-color pairs. Longer 
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response times on incongruent trials are interpreted as psychological interference resulting from 

competition between stimulus features. Since 1935, the basic Stroop effect has been replicated 

countless times (MacLeod, 1991), and is among the most well-known and easy to reproduce 

effects in behavioral science. Indeed, it appears that “everybody Stroops” (Haaf & Rouder, 

2017). 

 

Despite its replicability, Hedge et al. (2017) concluded that the Stroop effect is unreliable 

because of its low test-retest correlations within participants. In two separate studies, they found 

three-week test-retest intraclass correlation coefficients (ICCs) of .60 and .66. Similarly, ICCs 

for the Flanker and Posner Cueing tasks ranged from .4 to .7. Such findings have since been 

replicated and extended to wide range of self-control tasks (Enkavi et al., 2019). Other 

behavioral tasks that are used widely throughout the behavioral sciences, including the IAT, also 

show similarly low test-retest correlations (r = .01-.72; average of r ≈ .4) across versions and 

timepoints (Gawronski et al., 2016; Klein, 2020). In the brain sciences, similarly low intraclass 

correlation coefficients were found in a meta-analysis of 90 experiments (mean ICC=0.397), and 

poor reliability of activity in regions of interest of brain regions across 11 common tasks used 

within the Human Connectome Project and the Dunedin Study (ICCs=0.067-0.485; Elliott et al., 

2020). Unfortunately, such low test-retest reliability is not limited to task-based fMRI 

measures—both resting state and functional connectivity measures show comparably low 

reliability (e.g., Chen et al., 2015; Noble et al., 2019).  

 

Low test-retest reliability across brain and behavioral tasks has led to considerable, justified 

concerns about using these tasks to test and develop theories of individual differences (Dang et 
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al., 2020; Elliott et al, 2020; Schimmack, 2019; Wennerhold & Friese, 2020). When there are 

concerns about reliability, sample sizes required to overcome measurement error must increase 

to compensate. For example, the sample size needed to detect a true medium effect (r = .3, with 

80% power at 𝛼 = .05) between two measures with perfect test-retest reliabilities is 82, whereas 

two measures with test-retest reliabilities of .6 requires a sample size of 239 (Hedge et al., 2017). 

The implication for studies relating behavioral measures to BOLD responses in fMRI studies is 

quite sobering. In an optimistic setting where brain and behavioral measures have test-retest 

reliabilities of .6, assuming that 1 hour of fMRI scanning is $500 (USD), a study powered to 

detect a true effect of r = .3 costs $500 × 239 ≈ $120,000 for data collection alone. Otherwise, if 

low test-retest reliabilities are combined with small samples sizes, effects inferred from null 

hypothesis significance tests (when many tests are conducted) are often spurious and may be of 

much greater magnitude or in the wrong direction compared to true underlying effects (Gelman 

& Carlin, 2014).  

 

In sum, low test-retest reliabilities of popular behavioral paradigms limit their usefulness for 

testing and therefore developing explanatory theories of individual differences. Few substantive 

proposals have emerged to address this problem. Existing suggestions include abandoning 

unreliable measures altogether, recruiting far more participants, and increasing the number of 

trials collected. These work-arounds limit areas of research that have sample size constraints 

(e.g. neuroimaging research and clinical studies of difficult-to-recruit populations) or that have 

theoretical underpinnings necessitating measurement using behavioral tasks (e.g., implicit social 

cognition). In the sections that follow, we demonstrate how simply enhancing the approach to 

analyzing data can improve the precision of individual differences measures, thereby improving 
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statistical inference and opening the doors to more principled explanatory theory development 

with behavioral tasks. 

 

3. Breaking Down Inference 

In addition to the behavioral paradigm within which data are collected, inferences about 

behavioral phenomena depend on both a behavioral model assumed to generate data from the 

task and a statistical model used to estimate parameters from the behavioral model. Figure 1 

represents the interplay between these components, which we describe in more detail below.
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Figure 1. Pathway from theory to inference with behavioral data. Behavioral tasks are designed 

to elicit behaviors that test the substantive theory. Behavioral models formally relate the theory 

to features of the observed behavior. Here we show the “behavioral model” often assumed when 

analyzing Stroop data. Finally, the statistical model is used to calibrate uncertainty in estimates 

from the behavioral model. Such data are traditionally analyzed using a two-stage approach, 

whereby point-estimates of behavior are entered into a secondary statistical model. By contrast, 

with generative modeling we construct a single model that integrates the entire data generating 

process, spanning trial-by-trial response times to the group-level effects (e.g., test-retest 

reliability, individual differences, etc.). 
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3.1 The Behavioral Paradigm 

We define the behavioral paradigm by the stimuli, design space, response options, and other 

contextual features afforded to participants by a behavioral task. The Stroop task includes 

various word-color pair stimuli, response options for each possible color (e.g., blue, red, yellow, 

green), instructions about how to respond (e.g., based on colors of text), and the number of 

behavioral observations (trials) collected across conditions within the task (e.g., numbers of 

congruent versus incongruent trials). One challenge with implementing behavioral tasks is that, 

unlike standardized questionnaires where participants complete the same items, specific stimuli 

and numbers of trials often vary across studies (e.g., Judd et al., 2012; Wolsiefer et al., 2017), 

and sometimes even across individuals within studies. Traditional estimates derived from such 

tasks therefore vary as a function of stimuli used and numbers of observations, making them 

non-portable from the perspective of classical test theory (Rouder & Haaf, 2019). Non-

portability means that statistical effects estimated from behavioral measures vary as a function of 

task properties (e.g., numbers of trials per participant), which can have adverse effects on 

psychometric properties such as test-retest reliability as well as predictive validity and 

convergent validity. For any given study, non-portability can lead to attenuated and 

overconfident estimates. For example, the test-retest correlations and confidence intervals can be 

shifted downward toward zero. By contrast, when averaging across studies as in meta-analyses, 

non-portability can render estimates unstable and altogether uninterpretable—especially when 

different labs use variations of the task. 

 

Theoretical issues also arise when comparing different behavioral tasks that are intended to 

measure the same phenomenon. For example, the Stroop task can be viewed as one instantiation 
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of a potentially infinite set of alternative tasks for testing the verbal theory claim that 

“competition between stimulus features causes response interference”. One alternative 

instantiation is the Flanker task, in which stimuli are directed arrowheads rather than conflicting 

word-color pairs. Interference is induced by changing the orientation of “distractor” arrows 

relevant to a “target” arrow to be congruent (e.g., < < < < <) or incongruent (e.g., < < > < <). In 

principle, both tasks include key design elements (i.e., variation in congruency) necessary to 

examine interference effects. Nevertheless, the two tasks have distinct task demands that evoke 

different behaviors, and these differences in task demands must be accounted for to meaningfully 

compare performance across the two tasks. In other words, a theory must consider the task itself, 

because the data, which the theory imparts meaning on, are generated by the task. This is the job 

of a behavioral model. 

    

3.2 The Behavioral Model 

Behavioral models formally represent relevant aspects of the data that relate to psychological 

theory. Although often overlooked, the behavioral models that are assumed to generate effects of 

interest may be more important than the paradigm itself. In the Stroop paradigm (see Figure 1), 

the behavioral model traditionally specifies the effect of interference as the difference in mean 

response times across the two types of stimuli (i.e., congruent and incongruent): 

 

Equation 1 is indexed by 𝑖, indicating that the Stroop effect is calculated for each individual 

participant, where a positive Stroop effect indicates that average response time is longer for 

incongruent than congruent trials. By comparing the summary statistics associated with stimuli 

thought to instantiate different levels of interference, the behavioral model mathematically 

Stroopi = RTi,incongruent � RTi,congruent (1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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embodies the overarching substantive theory (see Figure 1). After the mean differences are 

computed, resulting “Stroop effects” are then used to make statistical inferences such as 

between-groups or individual-level comparisons. Although Equation 1 is typically not 

interpreted as a behavioral model, it implicitly assumes a specific data-generating model (we 

expand on this point in section 6.2). We therefore consider its widespread use atheoretical. 

 

Interference in the Flanker task is typically estimated in the same way as the Stroop effect 

(Equation 1). Despite both tasks being designed to measure the same phenomenon, correlations 

of individual differences on the two measures are consistently small (Hedge et al., 2017). More 

broadly, low convergence across behavioral measures designed to capture the same construct is 

the rule rather than the exception, with similarly weak effects emerging across measures of self-

control and implicit self-esteem (Cyders & Coskunpinar, 2011; Duckworth & Kern, 2011; 

Bosson et al., 2000). Although low convergence is partly due to low reliability and non-

portability as described above, we argue that the use of atheoretical behavioral models play a 

key role in producing low convergence because they fail to dissociate the psychological 

phenomenon of interest from auxiliary psychological processes. That is, their lack of specificity 

creates ambiguity in interpretation. Although Equation 1 details the main effect of interest, it is 

not well constrained with information about each individual’s pattern of responding across many 

different types of stimuli. Even at a very high level, the behavioral model in Equation 1 neglects 

the variance of the individual’s pattern of response times, and so it is incapable of answering 

even the simplest of questions about what the mean difference in response times actually means 

in the context of a set of response times. The situation is far bleaker when one considers that the 

behavioral model does not bear in mind the distribution of interference, which could be 
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established by changing the task demands (i.e., the base rate). For example, the original Stroop 

task in 1935 included a “word response” condition in which participants were asked to verbally 

respond to the stimulus word rather than the color (e.g., saying “red” out loud when the word 

“Red” is shown in the color blue; MacLeod, 1991). In these conditions, interference technically 

still exists because the stimuli involve two properties (i.e., the word and the color) which can be 

either congruent or incongruent, yet the interference effects as measured by the behavioral model 

are far weaker than the “color response” condition counterparts. Because the behavioral model is 

not equipped to capture both of these theoretically relevant stimulus effects within a single task, 

we have little reason to believe it should precisely capture the same interference phenomenon in 

a different task using different stimuli such as the Flanker task. Nevertheless, low convergence 

across behavioral tasks is often interpreted to as a difference in constructs rather than incomplete 

behavioral models (e.g., Cyders & Coskunpinar, 2011; Duckworth & Kern, 2011; Bosson et al., 

2000). 

  

More generally, use of descriptive summary statistics such as mean differences limits inferences 

about mechanisms underlying various patterns of behavior produced by a given task. As 

demonstrated in Figure 2, many different distributions—which could imply different data-

generating mechanisms—can yield the same mean. This is important because, once we collect 

behavioral data from participants, we are left with distributions of responses (e.g., choices, 

response times) for each individual. How we summarize these distributions has strong 

implications on resulting inference. When we limit ourselves to summary statistics, we can miss 

theoretically relevant aspects of our data such as variance (Johnson & Busemeyer, 2005), 

bimodality (Kvam, 2019a), or skew (Kvam & Busemeyer, 2020; Leth-Steensen et al., 2000). 
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Without employing a behavioral model that captures such characteristics, we can and often will 

draw inappropriate conclusions. For example, observed response time distributions in behavioral 

tasks such as the IAT, Stroop, Flanker, and Posner Cueing tasks are often heavily right-skewed 

(e.g., Hockley & Corballis, 1982; Whelan, 2008). In the Stroop task, both ignoring and removing 

skew results in incorrect conclusions: mean contrasts fail to uncover instances where congruent 

text color and color words facilitate performance, a phenomenon that can only be detected with a 

more theoretically informed behavioral model (i.e. a right-skewed ex-Gaussian distribution; 

Heathcote et al., 1991).  
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Figure 2. Qualitatively different distributions with the same mean. These distributions include a 

typical normal distribution (N, blue), a lognormal distribution (LogN, red), a sum of two normal 

distributions (yellow), an exponential distribution (Exp, purple), and a uniform distribution 

(Unif, green). All of these distributions have exactly the same mean and would therefore produce 

the same conclusions if analyzed with the behavioral model from Equation 1, regardless of how 

different their data-generating process may be. 
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Problems with behavioral summary statistics are not specific to response time data. Rotello et al. 

(2014) showed that using the ratio of correct to incorrect classifications as a metric for eye-

witness detection accuracy led researchers to mistakenly infer that sequential lineups (i.e., 

suspects shown one at a time) are superior to simultaneous lineups (i.e., suspects all shown at 

once). This behavioral model, however, does not account for differences between conditions in 

participants’ unwillingness to choose a suspect. The model therefore fails to capture the intended 

effect because the difference in detection accuracy is caused simply by participants being less 

likely to choose any suspect in the sequential lineups. When data are instead analyzed using a 

signal-detection theory model, the effect reverses (see also Kellen, 2019; Ross et al., 2020). 

 

There are many other examples that demonstrate how the unquestioned use of behavioral 

summary statistics can obscure proper explanations of phenomena, leading to strong conclusions 

that clash with theory-informed approaches. It is important to note that drawing theoretically 

inappropriate conclusions will occur even when heuristic approaches produce highly replicable 

results (Devezer et al., 2019; 2020). Despite repeated warnings going back decades (e.g., Meehl, 

1967), unchecked use of summary statistics as opposed to theoretically informed behavioral 

models continues to impede scientific progress. As stated by Regenwetter and Robinson (2017), 

“No amount of replication would provide a theoretical foundation for such methods. What is 

needed is a theoretically sound process of deriving accurate predictions from concise 

assumptions” (p. 540). It is critical that social, behavioral, and brain scientists work toward 

constructing models that reproduce theoretically relevant aspects of empirical data. Otherwise, 

we risk perpetuating the theory-description gap, using and misinterpreting models that fail to 

capture the intended behavioral mechanisms. Echoing broader discussions throughout the social, 
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behavioral, and brain sciences, a paradigm shift is called for in theory development, using tools 

made possible by advances in statistical computing. 

 

Fortunately, frameworks to characterize behavioral data more precisely and thoroughly are 

available across disciplines, including mathematical psychology (Navarro, 2020; Townsend, 

2008), neuroeconomics/value-based decision-making (Rangel et al., 2008; Busemeyer et al., 

2019), computational psychiatry (Ahn & Busemeyer, 2016; Friston et al., 2014; Huys et al., 

2016; Montague et al., 2012; Wiecki et al., 2015), neuroscience (Turner et al., 2013; Turner et 

al., 2017; Bahg et al., in press), and other areas throughout behavioral and cognitive science 

more broadly (Guest & Martin, 2020; Wilson & Collins, 2019). These frameworks use 

theoretically informed mechanisms to develop generative models of behavior that can be 

compared based on explanatory power. We define generative models of behavior as those that 

simulate data consistent with true behavioral observations at the level of individual participants2. 

Thus, mean contrasts do not qualify as generative models because they reduce individual-level 

data to a single estimate that cannot capture a full distribution of behavior (Equation 1). Figure 3 

illustrates the difference between traditional and generative modeling approaches, using 

inference based on response times as an example. In the remainder of this article, we refer to this 

approach toward modeling behavior-generating processes as the generative perspective. In 

Section 4 (below), we present simulations to provide a concrete example of why this approach is 

useful.

 
2Although many computational models are developed with the goal of neurobiological plausibility or to estimate 
parameters with definite psychological interpretations, we note that neither is strictly necessary by our definition of 
generative modeling. More detailed delineations among models can, however, be disentangled according to stricter 
criteria (Jarecki et al., 2020). 
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Figure 3. Interpretations of summary statistic versus generative approaches to inferring between-

condition changes in response times. The summary statistic approach is often used by default and 

chosen without reference to an underlying theory. By contrast, the generative approach begins 

with a model of behavior at the individual level (e.g., a lognormal distribution), and inferences 

are made by interpreting changes in model parameters across conditions, individuals, or other 

units of analysis. For example, if the response time distributions pertain to the Stroop task or 

IAT, the summary statistic approach simply infers a mean difference. The generative modeling 

approach infers a change in evidence dispersion, but not stimulus difficulty (we depict these 

parameters in section 5). Notably, increased dispersion produces a higher mean response time, 

but also a higher number of rapid response times. There are strong implications for our theory—

what does it mean for stimulus interference or implicit bias to produce dispersed response times? 
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3.3 The Statistical Model 

As shown in Figure 1, the statistical model is used to make inferences in the face of uncertainty, 

using parameters estimated from the behavioral model. Traditionally, summary statistics are 

estimated from behavioral data (e.g., percent correct, difference scores) and then entered into a 

secondary statistical model (e.g., linear regression). Group differences, correlations with other 

measures, and other theoretically relevant effects are then explored. With the Stroop and IAT, 

mean response time contrasts are used to estimate effects for each participant, and a linear model 

is used to determine if individual differences correlate with other variables, such as attention, 

self-control, or attitudes (Gawronski et al., 2016; Hedge et al., 2017). This two-stage approach—

whereby effects are computed for each participant then used in a secondary statistical model—

makes a strong assumption that when unmet contributes to poor test-retest reliability and low 

validity more generally (Ly et al., 2017; Rouder & Haaf, 2019; Turner et al., 2017). Specifically, 

it ignores uncertainty (i.e., measurement error) associated with each participant’s summary score. 

In Figure 1, white bars in the middle panel represent confidence intervals for means of each 

response time distribution, and therefore depict uncertainty around “true” mean values. Ignoring 

this uncertainty is mathematically equivalent to assuming that individual-level Stroop effects are 

estimated with infinite precision (i.e., no error), or that we have an infinite number of trials for 

each participant. There are many examples of how averaging across individuals while ignoring 

this uncertainty leads to faulty inferences (e.g., Davis-Stober et al., 2016; Estes, 1956; Heathcote,  

et al., 2000; Liew, Howe, & Little, 2016; Pagan, 1984; Vandekerckhove, 2014; Turner et al., 

2018), and in fact this inadequate treatment of individual-level uncertainty is directly responsible 

for making estimates from behavioral tasks non-portable (see Rouder & Haaf, 2019). By 

contrast, using statistical models that account for individual-level uncertainty leads to more 
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powerful group- and individual-level inferences (e.g., Haines et al., 2020; Romeu et al. 2019), as 

is shown next. 

 

Many readers will have anticipated that hierarchical (mixed effects, random effects, multilevel) 

modeling is one framework that can account for uncertainty in behavioral data at both individual 

and group levels. Hierarchical modeling is already common practice in some fields (Gelman & 

Hill, 2007), and it is a natural solution to traditional designs where trials/observations are nested 

within individuals who are themselves nested within groups, as well as designs where amounts 

of individual-level data are limited. Key for our purposes, hierarchical Bayesian analysis solves 

the issues of non-portability in behavioral paradigms because it specifies a single model that 

jointly captures individual- and group-level uncertainty. Further, it allows us to specify arbitrarily 

complex models that best meet our generative assumptions (i.e., properties of the underlying 

mechanism), which is not necessarily true of other approaches that accommodate measurement 

error such as structural equation modeling or classical attenuation corrections (e.g., Kurdi et al., 

2019; Westfall & Yarkoni, 2016)3. By specifying a hierarchical model over individual-level 

parameters of the behavioral model, we are building a full generative model spanning from 

within-person trial-level variation to between-person group-level effects/trends of interest. 

Variants of this model can be constructed, each with different assumptions, and then compared 

against the data. These models and their evaluation are presented in section 6. 

 
3 Although we cannot provide a detailed explanation here, Rouder and Haaf (2019) provide a comprehensive 
account of how hierarchical Bayesian models address psychometric issues such as non-portability, and both 
limitations to and future directions for hierarchical approaches (Rouder et al., 2019). Applied examples that 
demonstrate advantages of hierarchical Bayesian modeling over traditional two-stage approaches include Haines et 
al. (2020) and Romeu et al. (2019). For more general discussions, we refer interested readers to the extensive 
literature on hierarchical Bayesian modeling and related approaches (e.g., Craigmile et al., 2010; Kruschke, 2015; 
Lee, 2011; Ly et al., 2017; Rouder & Lu, 2005; Shiffrin et al., 2008). 
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Our central premise is that atheoretical behavioral models that rely on summary statistics (i.e., 

the summary statistic approach) and the two-stage approach described above produce an 

impoverished and incomplete view of rich individual differences underlying behavioral data. We 

argue further that generative modeling is better suited to detect and understand individual 

differences in behavioral data compared to traditional approaches. Here, we focus our attention 

on how generative modeling affects test-retest reliability, but the same logic applies to any 

correlation measured between two constructs. Given that Rouder and Haaf (2019) already 

provide a thorough account of how hierarchical models yield higher test-retest reliabilities than 

the traditional two-stage approach, we focus on the choice of a behavioral model in the 

simulations presented below. 

 

4. Simulated Demonstration 

Using simulated response time data, we compare the following two “behavioral models” for 

estimating reliability: (1) the traditional two-stage summary statistic method (compute means, 

take the difference, and compute a test-retest correlation), and (2) a method that contrasts the 

distributions holistically (as articulated below) before computing a test-retest correlation. To 

generate simulated data, we drew response times from a lognormal distribution (right-skewed as 

in most response time tasks; Figure 2) for each participant and condition, then compared test-

retest correlations across the approaches. We simulated 150 “participants”, each of whom 

completed the response time task at two different sessions, with an artificial “congruent” and 

“incongruent” condition at each timepoint. Critically, the parameters used to generate response 

time data at each timepoint were exactly the same for each participant—the generative 
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parameters had true test-retest correlations of r = 1.0. The procedure produced right-skewed 

response time distributions with 80% of draws between 300 and 2000 milliseconds (see the 

online supplement for additional details). 

 

For each simulated participant, we conducted two reliability tests. The first simulated a 

traditional reliability analysis of performance (e.g., test-retest reliability of mean response time 

difference between congruent and incongruent trials in the Stroop task), with knowledge that the 

true generating parameters were unchanged across test and retest. For each of the two sessions, 

we computed the mean difference between each participant’s “incongruent” and “congruent” 

response time distributions. Next, we estimated Pearson correlations between the Session 1 and 

Session 2 mean differences across participants as an index of test-retest reliability. We repeated 

this procedure 1,000 times at sample sizes ranging from 10 to 400 per participant.  

 

Figure 4 shows results of this analysis. The top left panel shows an example distribution of 

inferred test-retest estimates across 1,000 repetitions for a sample size of 60 trials. These test-

retest reliabilities of mean contrasts ranged from close to r = 0 to r = .5 (middle-left panel, Figure 

4). Test-retest reliability improved substantially with more trials for each participant, to around r 

= .8 at 400 trials (middle-right panel).
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Figure 4. Test-retest reliability simulations comparing the mean difference between two 

conditions (top), and contrasting distributions using K-L divergence (bottom). The left panels 

show estimated reliabilities for sample sizes of 60 response times per participant (a typical size 

for the IAT) across 1,000 simulations. The right panels show how average reliability of these 

contrasts changes across sample sizes. 
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Taking the mean of a distribution is only one way to characterize the distribution, and mean 

contrasts are therefore only one way to represent our substantive psychological theory within the 

behavioral model (Figure 1). Given that means alone are often imprecise when characterizing 

entire distributions (Figure 2), a behavioral model that captures the entire shape of participants’ 

individual response time distributions may yield very different inferences. To demonstrate how 

important distributional information can be, we performed a second reliability analysis which 

used Kullback-Leibler (K-L) divergence to quantify the relative difference between each 

participant’s response time distributions across trials within conditions. K-L divergence makes 

no assumptions about the shape of response time distributions. However, it is not directly 

interpretable in the sense of a mean contrast (see the online Supplement for K-L divergence 

details). Nevertheless, it is useful to demonstrate the importance of distributional information for 

recovering individual differences. We estimated test-retest reliability as the Pearson correlation 

of the K-L divergence measure, as opposed to a mean contrast, across the simulated sessions for 

each of 1,000 repetitions. Results appear in the bottom panels of Figure 4. Most test-retest 

reliabilities based on K-L divergence between congruent and incongruent trials were between r = 

.85 and 1.0. Use of a distribution-informed metric was therefore much more successful in 

recovering the true test-retest of reliability (r = 1.0). 

 

4.1 Empirical and Theoretical Implications 

Results from our test-retest reliability simulations have both empirical and theoretical 

implications. Empirically, achieving desirable psychometric properties such as high test-retest 

reliabilities requires many behavioral observations (trials) from each participant—particularly 

when relying on traditional behavioral models (e.g., mean contrasts). Indeed, the reliability of the 
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mean contrasts only began to approach r = .8 after 400 trials per participant per condition, which 

is far beyond the typical number of trials used in such tasks. Theoretically, the implications are 

much broader. Psychometric properties of behavioral paradigms are highly dependent on 

underlying behavioral models (e.g., mean contrasts versus K-L divergence). Accordingly, 

models that are sensitive to the entire distribution of individual-level behavior are better suited 

for recovering individual differences. For response times, this necessitates behavioral models 

that capture full distributions of response times across trials, and the right-skewed nature often 

observed for such distributions (e.g., Heathcote et al., 1991; Hockley & Corballis, 1982; Kvam & 

Busemeyer, 2020; Leth-Steensen et al., 2000; Whelan, 2008). For dichotomous or categorical 

data, as we will demonstrate with the delay discounting task, this requires models that produce 

probabilities that represent how likely participants are to select each of the possible responses. 

 

5. Developing Generative Behavioral Models 

In this section, we illustrate how generative models can be built up from very primitive 

assumptions to fully characterize data. As you will see, even a very simple generative models 

can improve upon the problems with the behavioral model in Equation 1.  

 

5.1 The Normal Model 

To characterize response time data, a generative model must obey some very simple properties. 

First, response times are never negative. Second, response times typically have some spread or 

variance around a central tendency. Third, the variance is not spread evenly: the variance 

typically increases linearly with the mean of the response time (Wagenmakers & Brown, 2007), 

and so there is typically larger spread on the right side of the distribution than the left, which is 
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often called “right skew.” Fourth, there is typically some linear shift associated with response 

times, such that they are usually not near the lower bound of zero. As we build our generative 

model, we will bear these simple properties in mind.  

 

Perhaps the simplest behavioral model that can generate a full distribution of response times is 

the normal (Gaussian) distribution. For now, the normal distribution will not capture many of the 

aforementioned properties, but it can still be useful for exemplifying the shift away from the 

behavioral model in Equation 1 and the generative perspective. At the very least, the normal 

distribution characterizes both the central tendency and the variance or spread of the response 

time distribution. 

 

Using the Stroop task as a running example, each individual’s set of response times can be 

conceptualized as arising from a separate normal distribution. Parameters from each distribution 

(e.g., means/standard deviations) are specific to each person within each task condition. Similar 

to the K-L divergence test-retest simulation, the Stroop effect can be characterized by within-

participant changes in the shape of each individual’s response time distribution across trials 

within conditions. When using a normal generative distribution, the shape of the response time 

distribution is characterized by changes in the mean and standard deviation parameters across 

congruent and incongruent condition trials for each participant. We can write the normal 

generative model as  

 

where RT$,&,' contains the set of response times for participant 𝑖 in condition 𝑐 during 

experimental session 𝑡. The notation RT ∼ 𝑁(𝑎, 𝑏) signifies that the response times are drawn 

RTi,c,t ⇠ N (µi,c,t,�i,c,t) (2)
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from a generative process of a normal distribution (𝑁 ) with mean 𝑎 and standard deviation 𝑏. In 

Equation 2, the collection of response times in each block of our experiment are separately 

characterized by a specific mean (𝜇$,&,') and standard deviation (𝜎$,&,').  

 

To facilitate interpretation, we will introduce a relabeling of the terms in Equation 2 based on the 

conditions they correspond to. First, we label the congruent condition (i.e., the first condition 𝑐 =

1) as a baseline condition, where RT$,1,' = RT$,1234,', characterized by a baseline mean 𝜇$,1,' =

 𝜇$,1234,' and baseline standard deviation 𝜎$,1,' = exp(𝜎$,1234,').4 To isolate the effects of 

interference, or Stroop effects, we labeled a parameter 𝛥 to signify the change from the baseline 

condition to the condition of interest (e.g., incongruent condition). This means that RT$,2,' is 

characterized by a mean 𝜇$,2,' = 𝜇$,1234,' + 𝜇$,7,'  and standard deviation 𝜎$,2,' =

exp(𝜎$,1234,' + 𝜎$,7,'). Hence, whereas the behavioral model in Equation 1 reduces the response 

time data into a single summary statistic per condition, the behavioral model in Equation 2 will 

reduce the data into two parameters per condition, parameters which, as we discuss below, can 

be assessed in terms of their own mean and variance (Williams et al., 2019).  

 

5.2 The Lognormal Model 

Although the normal generative model provides a better characterization of distributional 

changes in response times across conditions than Equation 1, the model is limited in the sense 

that it is not flexible enough to obey all the simple properties of response time we outlined 

 
4 Note that we estimate the base and 𝛥 standard deviation parameters on the log scale and exponentially transform 
them to ensure they are greater than 0. Therefore, the test-retest correlation for the 𝛥 standard deviation parameters 
indicates their correlation on the log scale. See the online supplement for details.  
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above. In particular, the normal model (1) can produce negative response times, and (2) cannot 

capture asymmetric variance with respect to the mean (i.e., right skew). One simple adjustment 

we can make is to logarithmically transform the response time data, and assume a normal model 

on this transformed data. This process is equivalent to assuming that the response time data come 

from a different generative model called the lognormal distribution. Given this equivalence, we 

can specify a more theoretically consistent generative model as 

 

With this small adjustment, parameters 𝜇$,&,' and 𝜎$,&,' will have very different abilities when 

characterizing the many shapes of response time distributions. The lognormal model has a very 

helpful property in how the mean and standard deviation parameters interact (the law of response 

time; Wagenmakers & Brown, 2007): an increase in either parameter, holding the other constant, 

produces an increase in both the mean and standard deviation of the response times predicted by 

the model. As illustrations, Figures 5A and 5B show how changes in either parameter change the 

shape of the predicted response time data. Each possible distribution shape can be viewed as a 

prediction about how each participant’s response time data should look, where the possible 

shapes are constrained by our commitments (or hypotheses) regarding the data-generating 

process (i.e. the lognormal model).

RTi,c,t ⇠ Lognormal(µi,c,t,�i,c,t) (3)
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Figure 5. Lognormal and shifted-lognormal generative distributions. (A) For the lognormal 

distribution, changes in the 𝜇 parameter (interpreted as “stimulus difficulty”) produce changes in 

both means and variances of response time distributions (see Heathcote & Love, 2012; Rouder et 

al., 2014). (B) The 𝜎 parameter controls dispersion; changes in 𝜎 affect means and ranges of 

likely response times, but medians remain constant. (C) The shift parameter 𝛿 translates the 

distribution forward in time without changing the shape of the response time distribution.  
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5.3 The Shifted Lognormal Model 

Although the lognormal model is an improvement over the normal model, it still misses one 

important property of response time data. It is well established that different response modalities 

(e.g., responding with a key press versus mouse, versus verbal response) can produce shifts in 

response time distributions, even when the task demands and underlying evidence accumulation 

dynamics are identical (e.g., Gomez et al., 2015). Typically, this extra time taken to interact with 

the stimuli and apparatus is not considered part of the decision process, and is often referred to as 

“non-decision” time to make this theoretical position clear. Although non-decision factors seem 

unimportant, their presence may compromise our ability to accurately characterize response time 

data. For example, suppose a person completes a Stroop task in two conditions, one in which 

they are asked to respond verbally, and one in which they are asked to manually select an option. 

Even when we can assume that the individual will follow the same decision process in 

identifying the color of the word (i.e., they have the same 𝜇$,&,' parameter), there are likely to be 

differences in executing the response across conditions. For example, if it took longer to 

manually select a response compared to the verbal condition, we would expect the response 

times to be shifted relative to the verbal condition. In this case, fitting the lognormal distribution 

to the observed response times would lead to different estimates for 𝜇$,&,' across the two 

conditions because the simple lognormal is not specified correctly relative to the demands of the 

experiment. Consequently, having different estimates for 𝜇$,&,' might result in different 

interpretations about cognitive factors across the two contexts, when in reality, the factors were 

related to the influence of non-decision factors. 
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A simple solution is to adjust the lognormal distribution by introducing an additional 

parameter 𝛿 to move the distribution a distance of 𝛿 away from zero. Figure 5C illustrates the 

effect of 𝛿 on a specific lognormal distribution. To impose some theoretical constraints, we could 

assume 𝛿 is specific to each person, and that it is unlikely to change between conditions within a 

behavioral task. In our example above, this assumption would be inappropriate, but for the 

analyses we perform in later sections of the paper, such assumptions are justified by the manner 

in which the data were collected. With this new shift parameter and imposed theoretical 

constraints, we can now specify a shifted-lognormal model as 

 

where 𝜇$,&,' and 𝜎$,&,' have the same interpretations as described for Equation 3, and 𝛿$,' 

indicates the amount of shift or “non-decision time” specific to each individual at each of the two 

experimental sessions.  

 

Development of a generative model involves iteratively refining the model’s assumptions until 

they are as consistent with existing domain knowledge as possible (e.g., developing a models 

that adheres to the simple properties of response time we defined above). The appropriateness of 

the model is then evaluated by fitting it to empirical data. In the next section, we use data from 

previous studies to demonstrate how generative models can help us understand the reliability of 

individual differences in tasks that are popular across social, behavioral, and brain sciences. As 

mentioned in the Introduction, recent work has called into question the reliability of behavioral 

tasks for measuring individual differences (Hedge et al, 2017). Our goal in choosing these tasks 

is to demonstrate the generality of generative modeling across both different content areas of 

research and across different types of data (response times versus choice data in the delay 

RTi,c,t ⇠ Shifted-Lognormal(�i,t, µi,c,t,�i,c,t) (4)
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discounting task). By demonstrating the consistent increase in test-retest reliability afforded by 

generative modeling, regardless of the task or data type, we hope to convince readers that rich 

theories of individual differences can in fact be developed based on behavioral data, but that it 

requires a shift in focus toward modeling data-generating mechanisms. Details pertaining to each 

dataset and task appear below. 

 

6. Method 

6.1 Datasets and Behavioral Paradigms 

In total, we re-analyzed data from three different studies. First, we analyzed data from Hedge et 

al. (2017), who collected data on the Stroop, Flanker, and Posner Cueing tasks. Second, we 

analyzed data from Gawronski et al. (2017), who collected data on the Self-Concept 

(introversion/extraversion) and Race (Black/White) versions of the Implicit Association Test 

(IAT). Lastly, we analyzed data from Ahn et al. (2020), who collected data on the delay 

discounting task. Individually, each of these behavioral tasks has produced a deep body of 

literature—the Stroop, Flanker, and Posner Cueing tasks have been used extensively to develop 

theories of attention and inhibitory control, the IAT has been used to develop theories of implicit 

cognition and evaluations, and the delay discounting task has been used to develop theories of 

impulsivity and self-control. On Google Scholar alone (as of August 2020), the collective 

citation count of the original research pertaining to these tasks is over 54,000 (Eriksen & 

Eriksen, 1974; Green & Myerson, 2004; Greenwald et al., 1998; Mazur, 1987; Posner, 1980; 

Stroop, 1935). Further, these tasks cover areas of research spanning from psychology and 

neuroscience to behavioral economics.  
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Given that the Stroop task has served as the running example throughout this article, we describe 

the details of the Stroop task from Hedge et al. (2017) below. We provide details of all other 

tasks and datasets in the online supplement. 

 

For the Stroop task, two sets of participants (n = 47, n = 60 for Studies 1 and 2, as reported in the 

original work) performed the task in two separate sessions separated by three weeks. The main 

effect of interest is the contrast between congruent and incongruent conditions. Specifically, 

participants responded to the color of a word, which could be red, blue, green, or yellow. The 

word could be the same as the font color (e.g., the word “red” colored in red font; congruent 

condition or c = 1 [see online supplementary text]), a non-color word (e.g., “ship”; neutral 

condition), or a color word mapping onto another response option (e.g., the word “red” colored 

blue, green, or yellow; incongruent condition or c = 2). Participants completed 240 trials in each 

of the three conditions.   

    

6.2 Data Analysis 

6.2.1 Data Preprocessing 

For all tasks involving response times, we removed trials for which response times were 

recorded as < 0, assuming that such trials could not be part of the data-generating process5. For 

the delay discounting task, we did not remove trials. We used these liberal inclusion criteria 

primarily to keep our models consistent with the goals of generative modeling, but also to 

demonstrate the utility of hierarchical modeling. By keeping all trials (except negative response 

 
5 RTs < 0 were only found for 8 trials in total across 4 participants in the Posner Cueing task. We assume these RTs 
were recorded as less than 0 due to experimenter error (e.g. keyboard responses not being flushed before stimulus 
presentation), and therefore we removed them. 
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times), we can identify regions of model misfit that offer insights into cognitive mechanisms that 

would otherwise be obscured by oversimplified preprocessing choices (e.g., removing trials with 

response times less than 100 milliseconds). Such heuristic preprocessing choices tend to have 

strong, unpredictable effects on inference (Parsons, 2020).  

    

6.2.2 Two-Stage Summary Statistic as Behavioral Model Approach 

The two-stage approach proceeds by reducing behavior within each participant to a point 

estimate before entering the resulting point estimates into a secondary statistical model to make 

inference. Below, we describe its implementation for each task. 

 

6.2.2.1 Response Time Tasks.  

For the IAT, Stroop, Flanker, and Posner Cueing tasks, our first analysis followed the two-stage 

approach as described in the simulation study above. We computed mean contrasts across task 

conditions for each participant using Equation 16. In addition, we computed standard deviation 

contrasts for comparison with the generative models (i.e., standard deviations of incongruent 

condition response times minus standard deviations of congruent condition response times). To 

estimate test-retest reliabilities, we computed Pearson correlations across participants for the 

mean and standard deviation contrasts.  

 

6.2.2.2 Delay Discounting Task 

 
6 We recognize that the IAT is typically scored using the D-score, which is a mean contrast divided by the pooled 
standard deviation (Greenwald et al., 2003). However, the D-score also uses multiple empirically-derived 
preprocessing steps, including removing response times > 10,000 ms, removing participants with > 10% trials with 
response times < 300 ms, and replacing response times for all incorrect response trials with the mean response time 
of correct responses + 600 ms. We therefore used the simple mean contrast to maintain consistency across tasks and 
to facilitate comparison of summary statistic versus generative modeling approaches. 
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We used maximum likelihood estimation to estimate discounting rates (𝑘) and choice sensitivity 

parameters (𝑐) from a hyperbolic model for each participant and session, followed by Pearson 

correlations across participant to estimate test-retest reliabilities of model parameter point 

estimates (see online supplementary text for details)7. We compare these estimates to a 

hierarchical Bayesian estimation approach described below. 

 

6.2.3 Generative Modeling Approach  

If the goal is to make group-level inferences, hierarchical models allow us to appropriately 

account for individual-level uncertainty (see section 3.3). Further, hierarchical models can 

increase precision of parameter estimates at the individual level. Below, we extend the concept 

of generative modeling from individual- to group-level model parameters. 

          

6.2.3.1 Response Time Models  

We have now defined generative models of individual-level behavior for both response time 

tasks (normal, lognormal, and shifted lognormal models) and the delay discounting task 

(hyperbolic model). The next step toward building full generative models of test-retest reliability 

is to define group-level probability distributions for individual-level parameters. Starting with the 

three response time models, we assume that all 𝑖 individual-level parameters in the congruent 

 
7The sample mean and standard deviation contrast approach used for response time models is equivalent to 
assuming that response times are generated by normal distributions within participants (as in generative models), 
wherein the sample mean and standard deviation are maximum likelihood estimators for the normal generative 
distribution mean and standard deviation. The contrasts can therefore be thought of as contrasts between maximum 
likelihood estimates of normal generative models. This correspondence motivates our use of maximum likelihood 
estimation for the delay discounting model to show that benefits of generative modeling generalize beyond response 
time measures (see online supplementary text for details). 



 28 

task condition at each of the two sessions 𝑡 are drawn from a normal group-level distributions 

with unknown means and standard deviations8: 

   

The group-level normal distributions here are considered prior models (or prior distributions) on 

the individual-level parameters. Estimating group-level parameters from prior models allows for 

information to be pooled across participants such that each individual-level estimate influences 

its corresponding group-level mean and standard deviation estimates, which in turn influence all 

other individual-level estimates. This interplay between the individual- and group-level 

parameters produces regression of individual-level estimates toward the group mean (also 

referred to as hierarchical pooling, shrinkage, or regularization), which increases precision of 

individual-level estimates (Gelman et al., 2014). Note that the normal distribution functions 

similarly for individual-level latent parameters in Equation 7 as they do for observed response 

times in Equation 2. The assumption in both cases is that a normal distribution at one level of 

analysis generates observed or unobserved data at another level (e.g., observed response times 

are generated by normal distributions within participants, with unobserved means and standard 

deviations generated from normal group-level distributions). This joint specification of relations 

between parameters over all levels of analysis embodies the generative perspective. It allows for 

group- and individual-level model parameters to be estimated simultaneously (we illustrate the 

effect of these generative assumptions on individual-level parameters in section 7.6). Although 

we do not demonstrate it here, the group-level model (i.e., Equation 7) can be extended to 

 
8 As described in section 5.1, individual-level standard deviations were exponentially transformed such that 𝜎$,1,' =
exp(𝜎$,1234,'). Therefore, the normal group-level distribution on 𝜎$,1234,' corresponds to a lognormal distribution on 
𝜎$,1,'. 

µi,base,t ⇠ N (µmean,base,t, µsd,base,t)

�i,base,t ⇠ N (�mean,base,t,�sd,base,t) (7)
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estimate relations between personality traits and decision mechanisms (e.g., Haines et al., 2020), 

or to generalize parameter estimates beyond non-representative samples (Kennedy & Gelman, 

2019).  

  

To estimate test-retest reliability, we can assume that individual-level change parameters (e.g., 

𝜇$,7,' and 𝜎$,7,') are correlated across sessions. Staying true to the generative perspective, we 

can estimate this correlation by assuming scores are drawn from a multivariate normal 

distributions rather than independent normal distributions as in Equation 7: 

 

Using a multivariate normal distribution allows us to estimate covariances (𝐒; and 𝐒< matrices) 

between individual-level parameters across sessions that can be decomposed into group-level 

parameter variances and the correlation between individual-level parameters across sessions—

this correlation represents the test-retest reliability of the generative model parameters (see the 

online supplementary text for mathematical details). If the correlation is zero, then Equation 8 is 

equivalent to Equation 7 (i.e. the normal distributions are independent).  

 

For the shifted lognormal model, we estimated a single shift parameter for each participant at 

each timepoint (assuming that shift is equivalent between task conditions). Details about the shift 

parameter specification and prior distributions for group-level parameters in equations 7-8 are 

available in the online supplementary text.  
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6.2.3.2 Delay Discounting Model  

Extending the individual-level hyperbolic delay discounting model to a full generative model 

that can estimate test-retest reliability follows the same logic as outlined for response time 

models. We used the same multivariate normal distribution parameterization to estimate test-

retest correlations between discounting rate (𝑘) and choices sensitivity (𝑐) parameters (for 

details, see online supplementary text).  

 

6.2.4 Parameter Estimation  

A benefit of Bayesian estimation is that after specifying a joint probability model (i.e. the full 

group- and individual-level generative model), it is possible to compute conditional probabilities 

that determine which parameter values are most credible given the observed data. This results in 

posterior distributions over model parameters that are directly interpretable as the probability 

that the parameter takes on a specific value given the model and data9. Because computing 

conditional probabilities analytically requires solving complex and often intractable integrals, 

Bayesian model parameters are typically estimated using numerical integration methods. We 

estimated parameters from all models using Stan (version 2.19.2), a probabilistic programming 

language that uses a variant of Markov Chain Monte Carlo to estimate posterior distributions for 

parameters within Bayesian models (Carpenter et al., 2016). Details are described in the online 

supplementary text.  

 

7. Results 

 
9 Posterior distributions therefore differ from frequentist confidence intervals, for which probability is a property of 
the long-run frequency of the confidence interval producing procedure rather than of the specific parameter value of 
interest. 



 31 

To facilitate interpretation of our results, we provide a detailed interpretation of the data 

pertaining to the Stroop task, followed by a brief overview of all other tasks. Detailed results on 

each of the tasks are included in the online supplement.  

 

The results for the Stroop task in Study 1 of Hedge et al. (2017) are shown in Figure 6. Panel A 

compares the estimated test-retest correlation for the two-stage approach versus each of the 

normal, lognormal, and shifted lognormal generative models. For the two-stage mean and 

standard deviation contrasts, the test-retest correlations were r = .5 (95% CI = [.25, .69]) and r = 

.07 (95% CI = [-.22, .35]), respectively. These estimates are consistent with the results originally 

obtained by Hedge et al. (2017), who reported a test-retest intraclass correlation for the mean 

contrast of ICC = .6 (95% CI = [.31, .78]). The discrepancy between their estimate and our own 

is due to both our inclusion of all trials and participants (i.e. no data pre-processing) and our use 

of the Pearson’s as opposed to intraclass correlation. Regardless of the exact method, it is clear 

that the Stroop effect is indeed “unreliable” when estimated using the two-stage approach: with a 

test-retest reliability of r = .5 to r = .6, we would need well over 200 participants to detect (with 

adequate power) a simple correlation between the Stroop effect and an alternative individual 

difference measure with similar reliability (see Hedge et al., 2017). Such design constraints 

inherently limit the utility of the Stroop effect as a measure to advance theories of individual 

differences.
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Figure 6. Test-retest correlations and model misfit for the Stroop task. (A) Posterior distributions 

for the test-retest correlations of each of the three generative models (red distributions) versus the 

two-stage sample mean/standard deviation approach (vertical dotted black line with 

corresponding horizontal 95% confidence interval) for the Stroop task in Study 1 of Hedge et al. 

(2017). (B) Posterior predictive simulations and sample means (vertical dotted black lines) for 

each of the generative models for a representative subject.  
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We now focus attention on the generative model estimates in Figure 6A, which take the form of 

posterior probability distributions rather than point estimates and confidence intervals. Note that 

the posterior distribution can be interpreted in a variety of ways depending on our goals. For 

example, if one is interested in the probability that the test-retest correlation of the normal 

generative model is greater than the two-stage estimate of r = .5, this quantity can be easily 

computed as the proportion of the posterior distribution greater than r = .5. Alternatively, if we 

are interested in the single most likely test-retest estimate, we can simply locate the mode (or the 

peak) of the posterior distribution. However, we are typically interested not only in a single 

value, such as the mode, but a range of likely values that help us convey uncertainty. Therefore, 

to facilitate interpretability of posterior distributions, we report the posterior mean (sometimes 

referred to as the posterior “expectation”) along with the 95% highest density interval (HDI). An 

HDI is a generalization of the concept of the mode, but it is an interval rather than a single value. 

For example, a 20% HDI would contain 20% of the area of the entire posterior distribution, 

where every value within the interval is more likely than every value outside of the interval. We 

report 95% HDIs to maintain consistency with the 95% CIs reported for the two-stage approach, 

although we caution readers that HDIs and CIs are different concepts that have different 

interpretations. As has been a focus throughout this article, a mean and interval alone may do a 

poor job of summarizing a skewed distribution, so we recommend that readers interpret the 

posterior distributions holistically to fully appreciate the generative model estimates.  

 

For the generative models, the posterior distributions for the mean/difficulty contrast parameters 

(𝜇$,7) across models were concentrated above the two-stage estimates (posterior mean test-retest 

ranging from r = .76 to r = .81). Further, the 95% HDIs for the difficulty parameter in each of the 
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normal (95% HDI = [.46, 1.00]), lognormal (95% HDI = [.47, 1.00]), and shifted-lognormal 

(95% HDI = [.53, 1.00]) models included r = 1.00, indicating that we cannot rule out the 

possibility that there is in fact a perfect correlation in the mean/difficulty parameter contrast 

between retest sessions. This can be observed in the posterior distributions, which are 

concentrated against the upper limit of the correlation at r = 1.00. Posterior distributions for the 

standard deviation/dispersion parameters (𝜎$,7) were also concentrated above the two-stage 

estimates, although primarily for the lognormal and shifted lognormal models (posterior mean 

test-retest ranging from r = .23 to r = .62). In fact, the test-retest estimate for the standard 

deviation/dispersion parameters were much higher for the lognormal (95% HDI = [.26, .89]) and 

shifted-lognormal (95% HDI = [.25, .96]) models relative to the normal model (95% HDI = [-

.05, .50]), which demonstrates the importance of our data-generating (distributional) assumptions 

when making inference on individual differences.  

 

We can also compare the individual-level parameters across models to determine if the models 

produce different mechanistic inferences. For example, we may be interested in the proportion of 

participants who show a “Stroop effect” for each model. For demonstration, here we define an 

effect as when 95% or more of the individual-level posterior distribution on the contrast 

parameter of interest is greater than 0. We can then identify the proportion of participants 

meeting this criterion for each of the 𝜇$,7 and 𝜎$,7 parameters. Across all generative models, all 

47 participants showed evidence for an increase in 𝜇$,7 in the incongruent condition. However, 

for 𝜎$,7, 36, 31, and 24 participants showed evidence for an increase in the incongruent 

condition according to the normal, lognormal, and shifted-lognormal models, respectively. This 

pattern of results suggests that changes in response times across conditions within participants 
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may be attributable primarily to changes in 𝜇$,7 (difficulty) rather than 𝜎$,7 (dispersion) —an 

inference facilitated by the lognormal models.  

  

Figure 6B shows the fitted model predictions compared to the observed response times for a 

random, representative participant. The two-stage approach is represented simply as the mean 

response time within each of the congruent and incongruent conditions, whereas the generative 

model predictions are represented by the light red curves. The light red curves are response time 

distributions simulated from this participant’s estimated individual-level normal, lognormal, and 

shifted-lognormal model parameters, where variation between lines indicates uncertainty in the 

underlying parameters. With these simulated response times, we can compare how well each 

model can reproduce the observed response times. For this particular participant, the normal 

generative model reveals many shortcomings, the most obvious being the inability to capture 

right-skew along with the over-prediction of rapid response times. In contrast, the lognormal 

model in the middle panel provides a much better reproduction of the observed data, capturing 

both right-skew and the concentration of response times around the mean. The improvement 

offered by the shifted-lognormal model is more subtle in this example—it better captures the 

onset of the response time distribution (i.e. the most rapid response times) relative to the 

lognormal model due to the small shift, but otherwise performs similarly. We provide examples 

in the online supplement of where the shift makes a more noticeable difference (see Figures S2-

S5). Note that the improvement in model fit is accompanied by an increase in expected test-retest 

reliability for the lognormal models over the normal model, particularly for the dispersion 

parameters.  

 



 36 

Figure 7 visualizes the test-retest correlations for a subset of the remaining tasks, and Table 1 

contains descriptive results of the two-stage approach versus generative models for both Study 1 

and 2 of the Stroop task from Hedge et al. (2017), along with results for the Flanker and Posner 

Cueing tasks, the Self-Concept (introversion/extraversion) and Race (Black/White) versions of 

the IAT, and the delay discounting task. We include detailed results and figures (akin to Figure 

6) for each of these tasks in the online supplement (see Figures S2-S6). 
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Figure 7. Test-retest correlations for the IAT and Flanker, Posner, and delay discounting tasks. 

The distributions and intervals have the same interpretation as in Figure 6. See Table 1 and the 

online supplement for more detailed figures and description of each task. 
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There are three main take-aways from the results presented in Figure 7 and Table 1. First, the 

generative models consistently inferred higher test-retest correlations relative to the two-stage 

approach, and in many cases the changes are quite substantial. For example, in study 2 of the 

Flanker task, the two-stage sample mean contrast test-retest correlation was non-significant at r = 

-.13, whereas the normal generative model inferred r = .64. For the IAT Race version, the two-

stage sample mean contrast test-retest correlation was r = .45, whereas the normal generative 

model inferred r = .83. Such large differences have strong implications for testing and 

developing theories of individual differences within each paradigm. Indeed, low test-retest 

correlations at the individual level in the face of high group-level stability is the central paradox 

behind a recent influential theoretical advance within social psychology known as the “bias of 

crowds” (Payne, Vuletich, & Lundberg, 2017; see also Rivers et al., 2017). Attempting to solve 

this inconsistency led to the argument that IAT scores could be reliably caused by contexts, but 

do not exist within individual minds (absent specific eliciting contexts). As a result, the IAT is in 

the midst of a movement from its original conception as a measure of a construct with presumed 

trait-like qualities (e.g., unchanging) to one that picks up on whatever context an individual mind 

is currently embedded within (see Jost, 2019). Of note, others have argued that measurement 

error in the IAT is a more parsimonious solution to the apparent puzzle (e.g., Connor & Evans, 

2020). This latter viewpoint is partially supported by our generative model estimates, although 

there is still variation after accounting for measurement error that could be attributed to state 

effects or other changes in the underlying construct over time. 

 

Second, the generative model estimates are highly consistent across replications of the same task, 

whereas the two-stage approach estimates sometimes vary considerably (e.g., compare the two-



 39 

stage and generative model estimates for Flanker Study 1 versus Study 2). For example, for the 

Stroop task, the two-stage standard deviation contrast is significant in study 2 but not in study 1. 

Similarly, for the Flanker task, the two-stage mean contrast is significant in study 1 but not in 

study 2. By contrast, the more theoretically informed generative model (i.e. the lognormal 

models) parameters replicated consistently across studies.  

 

Third, there is variation among the generative models themselves, indicating that test-retest 

reliability varies—sometimes quite substantially (e.g., compare the normal versus lognormal 

models for the Stroop task and IAT Race version)—depending on our assumed behavioral 

model. The variability across models suggests that we should make efforts not to overgeneralize 

the failings (or successes) of a single behavioral model to the attributes of the behavioral task 

itself. In other words, we should be explicit in acknowledging that inferences are conditional on 

a data-generating model and not the task per se. 
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Table 1. Test-retest results for all tasks and models  

Task/Study Model Parameter Estimate 95% Interval 

Stroop Study 1 

Two-stage Approach 
Sample Mean .50 [.25, .69] 
Sample SD .07 [-.22, .35] 

Normal 
𝜇$ .76 [.46, 1.00] 
𝜎$ .23 [-.06, .50] 

Lognormal 
𝜇$ .77 [.47. 1.00] 
𝜎$ .60 [.26, .89] 

Shifted-Lognormal 
𝜇$ .81 [.53, 1.00] 
𝜎$ .62 [.25, .96] 

Stroop Study 2 

Two-stage Approach 
Sample Mean .63 [.45, .76] 
Sample SD .34 [.10, .55] 

Normal 
𝜇$ .84 [.67, .98] 
𝜎$ .37 [.15, .60] 

Lognormal 
𝜇$ .82 [.65, 1.00] 
𝜎$ .48 [.16, .76] 

Shifted-Lognormal 
𝜇$ .75 [.53, .93] 
𝜎$ .54 [.15, .91] 

Flanker Study 1 

Two-stage Approach 
Sample Mean .32 [.03, .55] 
Sample SD -.02 [-.31, .26] 

Normal 
𝜇$ .71 [.38, 1.00] 
𝜎$ -.03 [-.33, .25] 

Lognormal 
𝜇$ .73 [.42, 1.00] 
𝜎$ .11 [-.19, .41] 

Shifted-Lognormal 
𝜇$ .71 [.44, .95] 
𝜎$ .14 [-.18, 47] 

Flanker Study 2 

Two-stage Approach 
Sample Mean -.13 [-.37, .13] 
Sample SD .12 [-.14, .36] 

Normal 
𝜇$ .64 [.35, .89] 
𝜎$ .09 [-.16, 35] 

Lognormal 𝜇$ .73 [.48, .96] 
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Note. This table contains descriptions of the test-retest correlations for all the tasks analyzed in 

the current study. 95% intervals indicate the 95% highest density interval for generative models, 

and the 95% confidence interval for traditional two-stage summary statistic or MLE approaches. 

𝜎$ .07 [-.22, .37] 

Shifted-Lognormal 
𝜇$ .74 [.54, .92] 
𝜎$ .20 [-.13, .51] 

Posner Study 3 

Two-stage Approach 
Sample Mean .17 [-.15, .46] 
Sample SD .21 [-.11, .49] 

Normal 
𝜇$ .78 [.55, .98] 
𝜎$ -.06 [-.39, .26] 

Lognormal 
𝜇$ .81 [.54, 1.00] 
𝜎$ -.03 [-.36, .31] 

Shifted-Lognormal 
𝜇$ .80 [.52, 1.00] 
𝜎$ -.01 [-.35, .32] 

IAT Self-Concept 

Two-stage Approach 
Sample Mean .60 [.49, .69] 
Sample SD .39 [.25, .52] 

Normal 
𝜇$ .73 [.63, .82] 
𝜎$ .53 [.42, .65] 

Lognormal 
𝜇$ .69 [.59, .78] 
𝜎$ .60 [.47, .71] 

Shifted-Lognormal 
𝜇$ .67 [.56, .76] 
𝜎$ .40 [.21, .58] 

IAT Race 

Two-stage Approach 
Sample Mean .45 [.30, .59] 
Sample SD .15 [-.03, .32] 

Normal 
𝜇$ .83 [.73, .93] 
𝜎$ .32 [.15, .50] 

Lognormal 
𝜇$ .63 [.47, .78] 
𝜎$ .39 [.19, .58] 

Shifted-Lognormal 
𝜇$ .57 [.42, .74] 
𝜎$ .37 [.14, .57] 

Delay Discounting 

Two-stage MLE with 
Hyperbolic Model 

𝑘 .64 [.46, .77] 
𝑐 .54 [.33, .70] 

Hierarchical Bayesian 
with Hyperbolic Model 

𝑘 .74 [.63, .84] 
𝑐 .73 [.55, .90] 
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MLE = maximum likelihood estimation. Detailed results on each task and model are presented in 

the online supplement. 
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7.6 Comparing Summary Statistics to Generative Model Parameters 

It is useful to compare the individual-level estimates of the two-stage approach to those of the 

generative models to develop an intuition for why test-retest is higher in the generative models. 

Figure 8 illustrates the differences between approaches. We chose these examples to demonstrate 

how the hierarchical pooling within the generative models affects individual-level parameter 

estimates in different circumstances. Hierarchical pooling refers to the regression of individual-

level parameters toward the group-level mean, which results from Equation’s 7-8. In Study 1 of 

the Stroop task, mean contrast estimates (𝜇$,7) that would ordinarily be considered outliers in the 

two-stage approach are pooled toward the group-mean, which produces higher expected test-

retest reliability (see Figure 6A and Table 1). The generative model parameter 𝜇$,7 estimates 

also reveal potential practice effects, whereby almost every participant’s expected mean contrast 

is lower at Session 2 relative to Session 1. Conversely, standard deviation contrast estimates 

(𝜎$,7) show weak pooling in addition to poor expected test-retest reliability, which is reflected in 

the posterior distribution on the test-retest correlation for the normal model being centered 

around 0 in Figure 6A. The same general pattern holds in the IAT (Black/White Race version), 

where 𝜇$,7 and 𝜎$,7 exhibit strong and weak pooling, respectively. However, pooled 𝜇$,7 

estimates for the IAT show regression toward the mean rather than potential practice effects. For 

the delay discounting task, both discounting rate (𝑘$) and choice sensitivity (𝑐$) parameters show 

moderate pooling (see Figure 7). Taken together, results demonstrate that hierarchical models do 

not automatically confer higher test-retest reliability—instead, pooling only occurs to the extent 

it is warranted by data (see also our test-retest parameter recovery results in the online 

supplement).  
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Figure 8. Relationship between two-stage estimates and generative model parameters. For the 

response time models (Stroop & IAT tasks), two-stage estimates are the sample mean and 

standard deviation contrasts for each participant and retest session (i.e. estimates from the 

summary statistic approach); generative model parameters are means of the individual-level 

posterior distributions (i.e., posterior expectations) for each participant. Black lines connect the 

two-stage estimates and generative model parameters for each participant to demonstrate how the 

hierarchical model induces regression to the group-level mean. To help visualize the low 

correlation for the Stroop study, the standard deviation panel is zoomed in and two participants 

are not shown. For the delay discounting task, two-stage estimates reflect maximum likelihood 

estimates for each participant’s discounting rate (𝑘$) and choice sensitivity (𝑐$) parameters; 

generative model parameters are means of the individual-level posterior distributions for each 

participant given by the full generative hyperbolic model. 
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8. Discussion 

Generative modeling is a framework that allows for researchers to use background knowledge to 

inform their statistical models, which, as we have demonstrated, allows for more precise 

characterization of individual differences in behavior and thereby facilitates theory development 

in a way not afforded by traditional methods. Our results run counter to mounting claims that 

behavioral tasks are poorly suited for developing theories of individual differences, which has 

been (erroneously) attributed to the low test-retest reliability of behavioral measures (e.g., Dang 

et al., 2020; Enkavi et al., 2019; Gawronski et al., 2017; Hedge et al., 2017; Wennerhold & 

Friese, 2020). By attending to the data-generating processes underlying behavior, generative 

modeling offers a solution not only to problems of low reliability (and predictive validity by 

extension), but also to problems with theory-description gaps arising from the use and 

overinterpretation of statistical models that fail to instantiate our substantive theories. In contrast, 

traditional methods of analyzing behavioral data are largely atheoretical—they make implicit 

data-generating assumptions that researchers seem not to be aware of, and these same 

assumptions lead to attenuated individual difference correlations and an overall impoverished 

view of behavioral data. This attenuation occurs through two primary sources. First, researchers 

rely on behavioral models that do not encode our substantive knowledge and therefore fail to 

capture important individual-level characteristics (i.e. distributions) of observed behavior. 

Second, researchers average response times (or other task behaviors) within participants before 

entering summary scores into secondary statistical models—this two-stage approach 

inappropriately assumes that the resulting individual-level summary measures contain no 

measurement error.  
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8.1 Further Improvements 

Several authors have promoted computational/cognitive models of behavior that are more 

complex than the models we described. Like the shifted-lognormal model, cognitive models have 

parameters with theoretically informed interpretations, which makes them ideal for reducing 

theory-description gaps in social, behavioral, and brain research. However, these models are 

rarely used due to their complexity and barriers to implementation. Albeit simpler, the generative 

models of response times and delay discounting that we presented are nonetheless still powerful. 

We acknowledge, however, that more advanced computational/cognitive models can offer even 

more advantages toward understanding of mechanisms of behavior and provide further insight 

into how the models we used could be extended and refined. Readers interested in an extended 

tutorial can refer elsewhere for descriptions of such models (Guest & Martin, 2020; Heathcote, 

Poniel, & Mewhort, 1991; Klauer, Voss, Zchmitz, & Teige-Mocigemba, 2007; Jepma, 

Wagemakers, & Nieuwenhuis, 2012; Johnson, Hopwood, Cesario, & Pleskac, 2017; Voss, 

Nagler, & Lerche, 2013; White, Ratcliff, & Starns, 2011). 

    

One extension of the response time models presented here is to add mechanisms to account for 

not only response times but also response accuracy. Estimates of individual differences related to 

paradigms such as the IAT can be informed by also quantifying joint distributions of correct or 

incorrect responses and corresponding response times (e.g., Conrey et al, 2005; Klauer et al., 

2007). The diffusion decision model has been leveraged to this end (Klauer et al, 2007; Ratcliff 

et al, 2016), but precisely estimating the full model requires far more data than is ordinarily 

collected in the IAT. One way to sidestep this problem for practical applications is to use a 

simpler model, such as the EZ diffusion model (Wagenmakers et al, 2007), and then compare 



 48 

parameters between conditions (congruent, incongruent). Another more natural extension of the 

shifted lognormal model is the lognormal race model (Rouder et al., 2014). This model jointly 

describes choices and response times as arising from competition among independent shifted 

lognormal accumulation processes for each possible response option.  

 

Another potentially fruitful extension is to directly model cognitive mechanisms underlying the 

effects of condition manipulations on changes in response time distributions. For example, we 

modeled condition effects in the Stroop task as simple differences in generative model 

parameters between congruent and incongruent trials (i.e. 𝜇$,7,' and 𝜎$,7,'). However, each 

stimulus in the task consists of a specific word and color feature, where only one feature should 

be used to make a response. Presumably, competition between each stimulus feature and 

corresponding correct responses give rise to observed changes in response times (Cohen et al., 

1990). This competition can be modeled with vector space semantic models of cognition, 

wherein different response options are represented as a mental association between concepts (i.e. 

psychological similarity). Such models, despite being much more complex than those presented 

here, offer many potential benefits. For example, they can be used to predict the effect of 

condition manipulations (e.g., different sets of colors in the Stroop task) on accuracy and 

response times in decision tasks (Bhatia, 2017; Kvam, 2019b), which makes them well suited to 

identify correspondence between different behavioral tasks (e.g., Stroop, Flanker). Indeed, many 

generative and cognitive models are developed to jointly capture phenomena across paradigms—

a process that often produces mechanistic insights that are easily obscured when using summary 

statistics (e.g., Kellen et al., 2016; Luckman et al., 2018; Turner et al., 2018).  
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It is important to reemphasize that throughout the iterative process of generative model 

development, model parameters can be assessed to determine their psychometric properties. 

Although we focused on test-retest reliability, there are many other properties worth exploring 

including parameter identifiability (e.g., Spektor & Kellen, 2018), parameter recovery (e.g., Ahn 

et al., 2011; Haines et al., 2018; Miletić, Turner et al., 2017), tests of selective influence (a form 

of construct validity where experimental manipulations cause expected changes in parameter 

values; Criss, 2010), and parameter convergence between behavioral models and models derived 

at other levels of analysis (e.g., with trait or neural models; Haines et al., 2020; Turner et al., 

2017). Bayesian analysis facilitates joint estimation of all model parameters and their 

hypothesized relations, thus allowing for proper calibration of uncertainty in key parameters 

(e.g., test-retest reliability). 

 

8.2 Benefits of Building Better Explanations 

We hope the previous section has made it clear that the landscape for building and refining 

generative models is vast, whereas typical summary statistics approaches are inherently limited. 

Generative modeling is thus especially appealing for improving mechanistic inferences about 

complex human behaviors across social, behavioral, and brain sciences. To summarize, 

generative models offer several key advantages over the two-stage summary statistics approach:  

1. Generative models require explicit mechanistic assumptions, minimizing the theory-

description gap. This facilitates theory development and principled abduction of 

competing hypotheses. 

2. Generative models use all available data, increasing precision of individual-level (person-

specific) parameter estimates when we have limited data at the individual level. 
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3. Generative models appropriately calibrate uncertainty in parameters (e.g., test-retest 

reliability) regardless of sample size, thus allowing results to be interpreted more 

confidently.  

Although this list is non-exhaustive, it shows that generative modeling offers solutions to many 

recent critiques set forth regarding theory development and research as typically practiced in the 

social, behavioral, and brain sciences, including both (1) low measurement reliability (Chen et 

al., 2015; Elliott et al., 2020; Enkavi et al., 2019; Gawronski et al., 2017; Hedge et al., 2017; 

Noble et al., 2019), and (2) theory-description gaps arising from the mis-specification, mis-

application, and mis-interpretation of statistical models, concepts, and effects (Corneille & 

Hütter, 2020; Devezer et al., 2019; 2020; Muthukrishna, & Henrich, 2019; Regenwetter & 

Robinson, 2017; Ross et al., 2020; Rotello et al., 2014; Szollosi & Donkin, 2019).  

 

Advances in computational statistics have only recently made generative modeling widely 

accessible. We anticipate that generative modeling will proliferate as scientists from all 

backgrounds recognize their utility for rigorous theory development and testing. There are now 

many accessible resources and software packages available to help researchers gain a deeper 

understanding of generative modeling to apply it to their own work. These include introductions 

to the philosophy and utility of generative or computational modeling for theory development 

(e.g., Guest & Martin, 2020; van Rooij & Baggio, 2020), tutorials on building your own 

generative models from first principles (e.g., Wilson & Collins, 2019; van Rooij & Blokpoel, 

2020), practical textbooks that combine introductions to both behavioral model development and 

hierarchical Bayesian modeling (Farrell & Lewandowsky, 2018; Lee & Wagenmakers, 2013), 

tutorials and case examples on developing joint generative models of behavior and brain activity 
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(Palestro et al., 2018; Turner et al., 2019), and open source R and Python software packages that 

allow beginners and advanced users alike to apply popular generative models of behavioral to 

their own data using hierarchical Bayesian modeling (e.g., Ahn et al, 2017; Mathys et al., 2014; 

Wiecki et al., 2013).  

 

We recognize that a shift toward generative modeling requires an investment in resources and 

statistics training not typical of the social, behavioral, and brain sciences. However, even for 

those who do not take up generative modeling themselves, there are two actionable steps that any 

researcher can take to facilitate generative modeling:  

1. Make raw behavioral data (i.e. trial- and item-level choices and response times) openly 

available, and 

2. Make an effort to not overgeneralize results obtained from behavioral data that are not 

analyzed with an underlying generative model. 

Although the benefits of (1) are quite straightforward, we emphasize (2) here because many of 

the criticisms regarding the utility of behavioral tasks for individual differences researchers 

relied on summary statistics alone, and as we have shown here these criticisms are overly 

general.  

 

8.3 Future Directions 

A final benefit of generative modeling is that it facilitates development of adaptive experimental 

designs that maximize informativeness of behavioral tasks. Staircasing procedures for behavioral 

measures (Cornsweet, 1962) and computer adaptive testing for self-report questionnaires or tests 

are examples, where stimuli are selected from a set of candidates based on behavioral responses 
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collected during the experiment. For staircasing, stimuli might vary along a particular dimension 

(e.g., delay until reward in a delay discounting task), and stimulus choice on the next trial 

follows a simple rule determined by a participant’s prior response: increase the delay if the they 

choose the larger later reward; otherwise, decrease the delay. Computer adaptive testing, on the 

other hand, first quantifies properties of stimuli (e.g., item difficulty), and then proposes items 

based on a test taker’s performance. For example, if a student answers the first few questions 

correctly on an exam, following up with more difficult questions is more informative for 

estimating the student’s ability.  

 

Adaptive design optimization is a powerful extension of traditional adaptive designs (ADO; 

Cavagnaro et al, 2011; Myung et al., 2013). With ADO, the simple adaptive rule used in 

staircasing is replaced by an algorithm that includes all possible stimuli that can be presented in 

the experiment and a generative model of the decision process (most often a cognitive model). 

Rather than presenting all stimuli equally often, or following some other heuristic method, the 

model-based algorithm in ADO guides selection of experimental stimuli toward regions in the 

design space that are the most informative for reducing uncertainty about parameters of the 

generative model. In the context of the generative models developed above, the objective of 

ADO is to optimize parameter estimation, which can substantially improve reliability. For 

example, in delay discounting tasks, ADO can identify combinations of rewards and delays that 

optimize estimation of discounting rates, achieving test-retest reliabilities greater than r = .95 in 

fewer than 20 trials (Ahn et al., 2020). ADO is currently underutilized in most areas of 

behavioral science, but user-friendly software packages are now available (Yang et al., in press). 
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9. Concluding Remarks 

Collecting data with high precision throughout the social, behavioral, and brain sciences is often 

laborious, expensive, and time consuming—particularly in areas of research centered on at-risk, 

difficult to study populations or those that rely on expensive technologies such as MRI. It is 

therefore surprising that the most common analysis methods throw away useful information, 

often at the expense of theory. The two-stage summary statistic approach, which reduces 

behavioral data to point estimates and then uses these estimates in a second statistical model, 

produces parameters that are imprecise and often difficult to interpret vis-à-vis substantive 

theory. Consequences include overconfidence in estimates that are attenuated by measurement 

error (e.g., confidence intervals too narrow due to ignoring individual-level measurement error), 

incorrect inferences, and failures to replicate—all of which decrease the informativeness of 

research on individual differences. Although the two-stage approach has historically sufficed for 

making some group-level inferences (e.g., when comparing group means), it is problematic when 

used to make inferences about individual differences.  

 

By contrast, generative modeling facilitates development of theory-informed models of behavior 

and takes advantage of all the information available, thereby improving accuracy of inference 

even when using smaller samples of behavioral (or neural) data. Our results question conclusions 

drawn from previous studies on reliability of various behavioral and neural measures—

particularly those that relied on two-stage approaches (e.g., Chen et al., 2015; Elliott et al., 2020; 

Enkavi et al., 2019; Gawronski et al., 2017; Hedge et al., 2017; Klein, 2020; Noble et al., 2019). 

Future work could both extend the models presented here to explore idiosyncrasies in behavioral 

tasks in addition to relations between behavioral constructs and variables specified at other levels 
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of analysis (e.g., trait and neural measures), thus minimizing theory-description gaps. 

Sufficiently refined generative models can begin to take advantage of methods such as ADO that 

can improve the informativeness and efficiency of experiments even further.  

 

We end with a cautionary yet hopeful note: as history has revealed, heuristic use of summary 

statistics absent a generative model can and will lead us astray. Although our generative models 

may be wrong or mis-specified, they are at least explicit, forcing us to specify our assumptions 

regarding how behavior arises. By embracing their incompleteness, we can strive to build 

generative models that are precise and thus meaningfully incorrect, rather than relying on 

heuristic models that are ambiguous and only circumstantially interpretable. Knowing where our 

assumptions are wrong then provides a natural path toward deepening our understanding of the 

mechanisms underlying behavior.
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