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Abstract 

Counterfactual emotions including regret and disappointment play a crucial role in how people 

make decisions. For example, people often behave such that their decisions minimize potential 

regret or disappointment and therefore maximize subjective pleasure. Importantly, functional 

accounts of emotion suggest that the experience and future expectation of counterfactual 

emotions should promote goal-oriented behavioral change. Although many studies find empirical 

support for such functional theories, the cognitive-emotional mechanisms through which 

counterfactual thinking facilitates changes in behavior remain unclear. Here, we leverage 

computational models of risky decision-making that extend regret and disappointment theory to 

experience-based tasks, which we use to determine how people learn counterfactual 

representations of their decisions across time. Further, we use computer-vision to detect positive 

and negative affect (valence) intensity from participants’ faces in response to feedback, which 

we use to determine how experienced emotion may influence cognitive mechanisms of learning, 

reward sensitivity, or exploration/exploitation—any of which could result in functional changes 

in behavior. Using hierarchical Bayesian modeling and Bayesian model comparison methods, we 

found that: (1) people learn to explicitly represent and subjectively weight counterfactual 

outcomes with increasing experience, and (2) people update their counterfactual expectations 

more rapidly as they experience increasingly intense negative affect. Our findings support 

functional accounts of regret and disappointment and demonstrate the potential for 

computational modeling and model-based facial expression analysis to enhance our 

understanding of cognition-emotion interactions.  
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1. Introduction       

1.1 Emotions and decision-making 

      The idea that emotions interact with our cognitions to impact decision-making can be traced 

back multiple centuries, and many prominent scholars have expanded on our understanding of 

the interplay between emotion and cognition throughout the years (e.g., Darwin, 1872/1998; 

James, 1884). However, it was not until the late 20th century that decision theorists began to 

widely acknowledge the importance of emotion in how people make decisions (for an extended 

history, see Lerner, Li, Valdesolo, & Kassam, 2015). Today, we know that emotions are central 

to arguably every decision we make—they underlie a wealth of basic decision-making processes 

including outcome evaluation (Davis, Love, & Todd Maddox, 2009), valuation (Heilman, 

Crişan, Houser, Miclea, & Miu, 2010), and exploration/exploitation (Frey, Hertwig, & 

Rieskamp, 2014). Further, the neural mechanisms that subserve emotion-regulation are 

inseparable from those responsible for general decision-making (Mitchell, 2011), which has led 

to novel computational theories of emotion-regulatory processes (Etkin, Büchel, & Gross, 2015). 

While traditional economic perspectives view emotion-driven decision-making as a once 

adaptive—yet now irrational—relic of human evolution (see Keltner & Learner, 2010), these 

recent accounts represent a more general shift toward conceptualizing emotions as fundamental, 

functional components of human cognition that help us make better inferences within complex, 

dynamic environments (Eldar, Rutledge, Dolan, & Niv, 2016).  

1.2 The functional role of counterfactual emotions 

      Counterfactual thinking elicits multiple emotions that are crucial to decision-making. Regret 

is an example, which is characterized by an aversive emotional state that occurs when we make a 

choice and then later wish to have made an alternative choice (Kahneman & Miller, 1986). In 
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fact, regret is one of the most frequently experienced and discussed emotions in everyday 

situations (Shimanoff, 1984), and people who experience regret either most often and/or most 

intensely endorse more severe symptoms of anxiety and depression in addition to lower life 

satisfaction than their peers (Kocovski, Endler, Rector, & Flett, 2005; Lecci, Okun, Karoly, 

1994, 1994; Monroe, Skowronski, Macdonald, & Wood, 2005). Despite being associated with 

multiple negative functional outcomes, many people look back on regretted decisions with 

appreciation, which is not true of other negative emotions like anger, jealousy, anxiety, guilt, and 

boredom (Saffrey, Summerville, & Roese, 2008). These seemingly paradoxical findings are 

reconciled by functional accounts of counterfactual thinking including decision justification 

theory and regret regulation theory (Connolly & Zeelenberg, 2002; Zeelenberg & Pieters, 2007), 

both which posit that regret facilitates goal-oriented behavioral change by signaling us to avoid 

making unjustified choices that lead to outcomes that could have been better had we made a 

different choice (see also Epstude & Roese, 2008; Roese, 1994). Indeed, the intensity of regret 

that we experience is proportional to how active our role is in the regret-inducing decision, how 

justifiable our decision is, and the quality of our decision process (e.g., Inman & Zeelenberg, 

2002; Pieters & Zeelenberg, 2005). Further, we experience the most regret in domains where we 

have opportunities for corrective action (Roese & Summerville, 2005). However, not all forms of 

negatively-valenced counterfactual thinking lead to long-term behavioral changes, suggesting 

that regret serves a specific function in how we decide among multiple risky choices (e.g., 

Zeelenberg et al., 1998).  

      Disappointment is another example, which occurs when comparing an obtained outcome to 

what could have been obtained in an alternative state of the world (Kahneman & Miller, 1986). 

Like regret, disappointment is experienced as aversive, yet it is evaluated favorably in retrospect 
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(Saffrey, Summerville, & Roese, 2008). Individual differences in how children regulate 

experienced disappointment predicts behavioral problems including symptoms of attention-

deficit/hyperactivity disorder and oppositional/aggressive behavior (Cole, Waxler, & Smith, 

1994), and adults who experience more frequent disappointing life events tend to show higher 

rates of depression (Goodyer, Herbert, Tamplin, Secher, & Pearson, 1997). Unlike regret, 

disappointment appears to play a primary role in modifying how people evaluate situational 

outcomes or one-off events as opposed to promoting specific changes in behavior (e.g., 

Markman, Gavanski, Sherman, & McMullen, 1993; Zeelenberg et al., 1998). For example, 

experimental evidence suggests that disappointment can lead one to feel worse about outcomes 

they receive when they could have received better outcomes—and alternatively, people feel 

better about outcomes they receive when they could have received worse outcomes (e.g., 

Ordóñez, Connolly, & Coughlan, 2000). Therefore, the functional value of disappointment 

appears to be related to coping and reacting to situational outcomes that indirectly facilitate more 

long-term positive gains, whereas regret is more directly related to long-term changes in 

behavior.  

      While the observational and survey-based studies described above consistently implicate 

counterfactual emotions in goal-oriented behavioral change, the cognitive mechanisms 

responsible for such changes remain underexplored. In particular, it is unclear how people learn 

to represent counterfactual expectations as they gain experience so that they can make choices to 

minimize anticipated regret and disappointment. By determining the cognitive and emotional 

mechanisms involved in counterfactual decision-making, we may better understand why regret 

can sometimes lead to positive behavioral changes (e.g., corrective action), whereas other times 

it can lead to negative behavioral outcomes (e.g., depression, anxiety, lower life satisfaction, 
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etc.). Similarly, identifying such mechanisms may elucidate the functional role of 

disappointment, thus providing an explanation for prospective links between disappointing 

events and behavioral problems.  

1.3 Regret and disappointment theory 

      Theories of decision-making including regret and disappointment theory offer a formal 

language to understand the functional role of counterfactual emotions. Regret theory 

encompasses a variety of computational models that describe how people incorporate expected 

regret into their decisions (Bell, 1982; Loomes & Sugden, 1982b). According to regret theory, 

counterfactual comparisons between the outcomes of chosen and foregone actions lead to 

cognitive-emotional states of regret or rejoicing if the comparison is negative or positive in 

value, respectively. By assuming that people make decisions to maximize their emotional 

expectations, regret theory can capture shortcomings of competing theories (e.g., expected utility 

theory) while maintaining a simple form with relatively few assumptions compared to other 

models (Loomes & Sugden, 1982a; 1982b). An example is the correlation effect, which 

manifests as a change in expected-value maximization behavior when the payoffs across choices 

are correlated (Diederich & Busemeyer, 1999; Grosskopf, Erev, & Yechiam, 2006). Specifically, 

when outcomes are negatively correlated such that a good outcome following chosen option A 

coincides with a bad foregone outcome for option B (and vice-versa), people tend to choose the 

less-optimal choice more frequently relative to when the outcomes are positively correlated. 

Further, Erev et al. (2017) showed that the correlation effect is only apparent when participants 

are given feedback on both the chosen and foregone choice outcomes. Importantly, strong utility 

models such as prospect theory (Kahneman & Tversky, 1979)—which assume that people 

evaluate each option independently—fail to capture the correlation effect, whereas those derived 
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from regret theory naturally capture such effects by assuming that people incorporate 

information on the value of counterfactuals into the utility of each option.  

      Disappointment theory was later developed and incorporated into models of regret (Bell, 

1985; Loomes & Sugden, 1986). Similar to regret, disappointment is conceptualized as the 

difference between possible states of the world. Unlike regret, disappointment does not involve 

the comparison of an alternative choice to the received outcome, but instead it is a comparison of 

an alternative state of the chosen option to the received outcome (e.g., option A could have 

resulted in a positive outcomes but instead resulted in a negative outcome). By doing so, 

disappointment theory offers predictions regarding how experienced outcomes should relate to 

experienced positive/negative affect (or valence)—specifically, valence is assumed to result from 

differences between experienced and expected choice outcomes, such that even strongly 

valenced outcomes (e.g., losing a large sum of money, getting a big promotion) are not predicted 

to induce strong emotional states if more extreme outcomes were expected (e.g., a $5,000 salary 

raise may be valued negatively if a $10,000 raise was expected). Therefore, models of 

disappointment (and its positive counterpart elation) can capture behavior consistent with 

commonly found choice heuristics such as win-say-lose shift rules (e.g., Worthy, Hawthorne, & 

Otto, 2013), where actions are increasingly (or decreasingly) preferred for leading to better (or 

worse) than expected outcomes. 

1.4 Learning counterfactual representations 

      Counterfactual models have been used to successfully model how individuals make decisions 

based on description (i.e., probabilities associated with outcomes are given; Coricelli et al., 2005; 

Mellers et al., 1997; 1999), yet the majority of decisions that we make in everyday life are based 

on experience (i.e., probabilities are learned from experience). Given the large and reliable 
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differences observed in how people make description- versus experience-based decisions (e.g., 

Barron & Erev, 2003; Hertwig, Barron, Weber, & Erev, 2004; Ungemach, Chater, & Stewart, 

2009; Wulff, Mergenthaler-Canseco, & Hertwig, 2018), it is imperative to develop and test 

models of regret/disappointment that generalize well across both description- and experience-

based paradigms. Specifically, people act as if they overweight low probabilities when making 

description-based choices yet underweight low probabilities when making experience-based 

decisions. Therefore, despite regret/disappointment showing robust effects across a number of 

different experience-based decision paradigms (e.g., Avrahami, Kareev, & Hart, 2014; Hart, 

Avrahami, Kareev, Todd, 2015; Kareev, Avrahami, & Fielder, 2014; Marchiori & Warglein, 

2008; Rakow, Newell, Wright, 2015), the extent to which our formal models of counterfactual 

thinking generalize across both description- and experience-based paradigms is less clear. The 

naïve sampler model is an example of an experience-based model used to explain regret (Erev & 

Roth, 2014), which assumes a memory trace sampling process that can mimic regret effects by 

comparing small samples of past outcomes to current outcomes. The Best Estimate and Sampling 

Tools model is another example (Erev et al., 2017), which includes a recency-weighted regret 

minimization heuristic and has been used to explain changes in choice preferences resulting from 

repeated decisions from description with feedback (see also Chen, Liu, Chen, & Lee, 2011). 

Importantly, such models deviate strongly from traditional decision-theoretic models of risk such 

as prospect theory, disappointment theory, and regret theory (e.g., Delquié & Cillo, 2006; 

Kahneman & Tversky, 1979; Loomes & Sugden, 1982; 1986) in that they do not describe 

individuals’ choices in terms of “subjective functions” of values and probabilities because they 

are not explicitly represented in the model.  
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      Differences between computational models used to explain counterfactual thinking for 

description- and experience-based decision-making are important to consider for two reasons: (1) 

functional theories of counterfactual thinking suggest that regret plays a role in goal-oriented 

behavioral change, which necessitates some form of experience-based learning; and (2) 

instantiations of disappointment and regret theory assume that counterfactual expectations are 

weighted by described probabilities, yet described probabilities are not available for the majority 

of decisions people make that could ostensibly lead to disappointment or regret (see Griffiths & 

Tenenbaum, 2006; Hertwig & Erev, 2009). For example, traditional theories of regret and 

disappointment do not include learning mechanisms, so they cannot account for changes in either 

choice preferences or experienced emotion intensity over time that are suggested by functional 

theories of counterfactual thinking (e.g., in designs where participants make repeated decisions 

from description with feedback). Therefore, an important goal of the current study is to develop a 

model consistent with functional theories of counterfactual thinking that can be used to explain 

goal-oriented changes in behavior over time. 

 

1.5 Informing computational models with experienced emotion 

      Although computational models show strong promise for deepening our understanding of 

how emotions influence behavior, they are typically developed to account for choice data alone 

without making explicit assumptions about the dynamic relationship between experienced 

emotions and behavior. Indeed, several studies have applied counterfactual models to 

experience-based tasks (Boorman, Behrens, & Rushworth, 2011; Erev et al., 2014; Hayden, 

Pearson, & Platt, 2009; Lohrenz, McCabe, Camerer, & Montague, 2007; Yechiam & Rakow, 

2012); yet few studies have related components of these models to specific emotional processes, 
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and still fewer have used independent measures of emotion (e.g., self-reports, skin conductance 

response, etc.) to inform cognitive model development (Jian Li, Schiller, Schoenbaum, Phelps, & 

Daw, 2011; Mellers et al., 1997; 1999; Rutledge, Skandali, Dayan, & Dolan, 2014). In one of 

few studies of its kind, Coricelli et al. (2005) showed that people become increasingly regret-

averse as they experience more regret-inducing outcomes. Notably, the effect of cumulative 

regret aversion on subsequent choices was mediated by BOLD signaling in the medial 

orbitofrontal cortex and amygdala, which are part of a network that plays a crucial role in the 

development of emotionally relevant cue-outcome contingencies (e.g., Sharpe & Schoenbaum, 

2016). However, the model used in Coricelli et al. (2005) did not include a learning component, 

so it could not be used to identify the cognitive mechanisms responsible for changes in 

regret/disappointment expectations across time. Additionally, no external measures of emotion 

were included in the model.  

      Decision Affect Theory (DAT) is perhaps the most comprehensive model relating objective 

reports of emotion to expectations of regret and disappointment (Mellers et al., 1997; Mellers et 

al., 1999), although it was developed for description-based tasks and therefore does not include a 

learning mechanism to describe changes in preferences over time. DAT assumes that individuals 

make decisions by maximizing their subjective expected pleasure (𝑆𝐸𝑃 ), which is formalized as 

the subjective utility of a choice option plus counterfactual expectations: 

  

Here, regret and rejoice both involve upward and downward counterfactual comparisons across 

possible choice alternatives (i.e. “I am upset [glad] that I chose this option over the 

alternative.”), whereas disappointment and elation reflect upward and downward counterfactual 

comparisons across alternative states of the world (i.e. “I am upset [glad] that my choice turned 

SEP / (Utility) + (Disappointment or Elation) + (Regret or Rejoice) (1)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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out this way.”). Mellers et al. (1999) used Equation 1 to describe relations between individuals’ 

self-reported emotional response to feedback from description-based decisions (e.g., how do you 

feel from 50 (extremely elated) to -50 (extremely disappointed)? after a choice returns -$8 as 

opposed to +$8)1. Importantly, they showed that self-reported emotion intensity increased in 

proportion to how surprising the outcome was (where surprise is operationalized as one minus 

the objective probability of the chosen and/or counterfactual outcome). The association between 

experienced emotion and surprisingness is consistent with more recent work showing that 

individuals’ self-reported happiness is most strongly predicted by the prediction error induced by 

the outcome, such that happiness is higher when the outcome is better than expected and vice 

versa (e.g., Rutledge et al., 2014).  

      Altogether, previous studies have clarified relations between cognitive mechanisms 

underlying counterfactual thinking and experienced emotions, but they leave open the question 

of how experienced emotion interacts with such cognitive mechanisms to change behavior over 

time. The lack of studies using measures of emotion to explain the dynamics of counterfactual 

thinking is a potentially important oversight given the sophistication of regret and 

disappointment theory, the functional role of experienced emotion in motivating behavioral 

change, and the recent movements toward linking traditionally separated components of 

cognition and emotion (Barrett, 2009; Duncan & Barrett, 2007; Eldar et al., 2016; Etkin et al., 

2015; Pessoa, 2008; Pessoa & Adolphs, 2010). 

 

 

1 Note that DAT is primarily a model of emotional responses to outcomes, and not of choice per se. In fact, DAT 

produces unstable estimates when used to model choices alone (see footnote 10 of Mellers et al., 1999, p. 342) 
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1.6 The current study 

      Here, we use: (1) risky decision-making tasks that evoke counterfactual thinking; (2) 

computational, emotion-driven reinforcement learning models built on regret and disappointment 

theory; and (3) automated computer-vision coding of facial affect intensity (e.g., Haines et al., 

2019) to determine how people learn counterfactual representations of their decisions that 

produce changes in behavior in response to feedback gained through experience. Computer-

vision allows us to rapidly measure trial-by-trial positive and negative affect in response to 

feedback, which fills a critical gap in previous studies of counterfactual thinking; namely, prior 

studies have focused almost exclusively on the cognitive—but not the affective—components of 

counterfactual thinking, in part because objective emotion coding is difficult to implement 

during behavioral tasks. Further, we use hierarchical Bayesian analysis and Bayesian model 

comparison techniques to test a series of competing hypotheses (each formalized as a 

computational model) regarding both how counterfactual representations develop with 

experience and the how experienced emotion influenced cognitive mechanisms underlying 

counterfactual thinking.  

      Specifically, we develop models within the framework of traditional regret and 

disappointment theories (e.g., Ahn et al., 2012; Delquié & Cillo, 2006; Loomes & Sugden, 1982; 

1986), which allows us to test assumptions underlying functional theories of counterfactual 

thinking. We test a novel model assuming that that individuals learn a representation of 

counterfactual outcomes within the choice environment as they gain experience with each 

outcome, which provides a bridge between both: (1) traditional expected utility models and 

counterfactual models, and (2) description- and experience-based task formats that offer 
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feedback. We hypothesize that this novel model will account for experience-based changes in 

behavior over and above traditional models of experience-based counterfactual thinking that 

track a running regret/disappointment expectation for each choice option. Lastly, we hypothesize 

that emotional facial expressions that people produce in response to feedback will represent 

either: (1) learning, (2) valuation, or (3) exploration/exploitation mechanisms, any of which 

could provide an explanation for how experienced emotion leads to lasting changes in behavior. 

Below, we describe two studies designed to test our hypotheses across a broad range of risky 

decision-making paradigms. In the first study, we use data collected from a large number of 

participants undergoing various repeated description-based decisions with full feedback to 

develop and test our models. In the second study, we apply the best model to a smaller set of 51 

participants undergoing experience-based decisions with full feedback—a portion of which had 

their facial expressions in response to feedback recorded and analyzed using computer-vision (n 

= 31).  

       

2. Study 1 Method 

2.1 Participants 

      Our first study included a combined total of 686 participants’ data collected across both the 

2015 and 2018 Choice Prediction Competitions (Erev, Ert, Plonsky, Cohen, & Cohen, 2017; 

Plonsky, Erev, & Ert, 2017). We excluded trials where participants made choices that did not fit 

our task inclusion criteria (more detail below in 4.2 Behavioral Task), but all participants were 

included.  

 

2.2 Behavioral task 
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      In the Choice Prediction Competition data, all participants completed one of seven sets of 30 

gambling games (for a total pool of 210 games) in randomized order. For the current study, we 

excluded games within each set containing more than two options or payoffs to restrict our focus 

to 2-choice paradigms. Additionally, we excluded games involving choice ambiguity, where 

payoffs/probabilities were only partially described. Altogether, these exclusions restricted the 

number of possible games to 105 (mean [SD] number of games played across participants = 14.9 

[5.1]; range = 5-24) (see Supplementary Table 1 for a breakdown of included games).  

      Each game consisted of 25 trials, where the true payoffs and associated payoff probabilities 

were shown for each option before a choice was made on each trial (termed repeated description-

based choices with full feedback). Each set included a mix of games using: (a) safe vs. risky 

options and risky versus risky options, and (b) positive and negative outcomes. Additionally, for 

the first 5 trials within each game, no feedback on choice outcomes was revealed; starting from 

the 6th trial, “full-information” feedback on both the chosen and forgone outcome was given (see 

Figure 1 for an example trial). Participants were instructed to make preference-based choices, 

and that they would be compensated using the real outcome of one randomly selected trial across 

trials and games. 
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Figure 1  

Example of description-based decision with full information feedback 

 

Note. In the description-based task, participants were presented with complete information on the 

outcome distribution of each choice, which remained constant within each game. For the first 5 

trials, feedback (i.e. the results of the choice shown in the last panel) was not presented. Starting 

from the 6th trial, participants received “full information” feedback on the outcome of the chosen 

and foregone choice outcomes.

Tim
e

A B

A:
6 with Pr(.5)
0 with Pr(.5)

B:
9 with Pr(.5)
0 with Pr(.5)

A B

A:
6 with Pr(.5)
0 with Pr(.5)

B:
9 with Pr(.5)
0 with Pr(.5)

Selected

6 9
A B

A:
6 with Pr(.5)
0 with Pr(.5)

B:
9 with Pr(.5)
0 with Pr(.5)

In this trial, you chose ‘B’ and gained 9
Had you chosen ‘A’, you would have gained 6
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2.3 Description-based computational models 

      We fit a total of 5 different models designed to test different counterfactual learning 

mechanisms that participants may use to develop a representation of disappointment/regret over 

time. Each model assumes that participants make choices to maximize their subjective expected 

pleasure, which varies over time depending on the outcomes they observe with experience. The 

models are all equivalent in the context of pure description-based decisions with no feedback, 

and they also all share the same three free parameters: (1) a learning rate, (2) a utility shape 

parameter, and (3) a choice sensitivity (or inverse temperature) parameter. Therefore, the models 

only differ in how they assume that a representation of subjective expected pleasure evolves with 

experience over time. We describe each of the models in detail below, along with a theoretical 

rationale for why we included them. 

      Counterfactual Representation Learning Model. Of the models we tested, the 

Counterfactual Representation Learning model most closely resembles traditional decision-

theoretic models of disappointment and regret (Loomes & Sugden, 1982;1986; Mellers et al. 

1997; 1999). The subjective expected pleasure (𝑆𝐸𝑃 ) for each choice option 𝑖 on trial 𝑡 is given 

by: 

 

where 𝑝!" indicates the objective, described probability of outcome 𝑗 for choice option 𝑖, 𝑛!is the 

number of possible outcomes for choice option 𝑖, and 𝑚!"# is the modified utility. The modified 

utility incorporates counterfactual information into the traditional utility function:  

 

SEPit =
niX

j=1

pijmijt (2)

mijt = xw
ij +Dijt +Rijt (3)
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Here, 𝑥!" is the outcome corresponding to the probability (𝑝!") in Equation 2, which is 

subjectively valued using a person-specific utility shape parameter 𝑤 (0 < 𝑤 < 1.5).  

      Then, 𝐷!"# is an expected disappointment term (or elation, depending on if it is negative or 

positive in value, respectively), which is a weighted sum of the difference between outcome 𝑗 for 

choice option 𝑖 and each possible alternative outcome within option 𝑖:  

  

Here, 𝑊!$# is a dynamic “experience weight” for the counterfactual outcome (𝑥!$), and 𝑤 is the 

same shape parameter from Equation 3. Note that Equation 4 deviates from classic 

disappointment theory by assuming that the counterfactual terms (𝑥!$) are weighted by their 

experience weights (𝑊!$#), as opposed to their objective probabilities (𝑝!$). Further, we assume 

that disappointment/elation is computed as the difference between pairs of potential outcomes 

within options (see Delquié & Cillo, 2006; Mellers et al., 1997; 1999), which is different from 

classic models of disappointment that use the difference between each possible outcome and the 

expected value of the option (e.g., cf. Equation 4 above to Equation 1 in Loomes & Sugden, 

1986). Importantly, if the counterfactual experience weight is equivalent to its objective 

probability (i.e. 𝑊!$# = 𝑝!$), then 𝐷!"# = 0 and expected disappointment drops out of the 

modified utility term. Similarly, because we initialize all experience weights at 0 (details 

described below), there is no expected disappointment/elation before participants experience 

feedback on the outcomes of their choices. Therefore, Equation 4 produces a dynamic 

disappointment expectation that varies with experience until all experience weights converge to 

their true values. This behavior is similar to a win-stay-lose-shift heuristic (e.g., Worthy, 

Hawthorne, & Otto, 2013), where options that have more recently returned their best outcome 

Dijt =
niX

k 6=j

Wikt(xij � xik)
! (4)
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(i.e. a “win”) are increasingly preferred and vice-versa. Note that it is possible to extend the 

model to include different valuation mechanisms for disappointment versus elation (e.g, a 

different 𝜔 parameter for when the difference in Equation 4 is negative versus positive, 

respectively), which can lead to a non-zero disappointment expectation even when all 𝑊!$# =

𝑝!$ (see Delquié & Cillo, 2006).  

      Finally, 𝑅!"# is an expected regret term (or rejoice, depending on if it is negative or positive 

in value, respectively), which is a weighted sum of the difference between each possible outcome 

𝑗 of option 𝑖 and each possible outcome 𝑘 of the alternative option 𝑖′:  

 

Therefore, regret is similar to disappointment, but the counterfactual expectation is computed 

across options as opposed to within options. In Equation 5, we again deviate from classic regret 

theory by assuming that the regret weight is a dynamic experience weight (𝑊!$#) as opposed to 

the objective probability of the counterfactual outcome (cf. Equation 5 above to Equations 2-3 in 

Loomes & Sugden, 1982). Similar to disappointment, the trial-dependent experience weight 

allows for regret to vary with experience over time, which we describe in more detail below.  

      Lastly, we use a logistic (i.e. softmax) choice rule to transform subjective expected pleasure 

(𝑆𝐸𝑃!#) into choice probabilities for each option: 

   

where 𝜃 is a person-specific and trial-independent choice sensitivity (i.e. inverse temperature) 

parameter determined by 𝜃 = 3% − 1 that captures how deterministically versus randomly 

participants make choices according to the differences in 𝑆𝐸𝑃  across options (Yechiam & Ert, 

Rijt =

ni0X

k=1

Wi0kt(xij � xi0k)
! (5)
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2007). Here, the free parameter is 𝑐 (0 < 𝑐 < 5). In Equation 6, we only sum over two options 

given that all gambles in our data involve only two options.  

      A crucial component of the model is the set of counterfactual experience weights (𝑾 ; see 

Equations 4 and 5), which have strong effects on the behavior and interpretation of the model. 

For example, when 𝑾 = 0, both the regret and disappointment terms return 0, and the modified 

utility reduces to a basic expected utility model similar to prospect theory (albeit without loss 

aversion or the probability weighting parameters in the current implementation; Kahneman & 

Tversky, 1979). Conversely, if 𝑾  are set to their corresponding objective outcome probabilities 

(i.e. all 𝑊!$# = 𝑝!$), then the model is akin to traditional regret theory (disappointment drops 

out, as described above), which is consistent with empirical evidence that regret dominates over 

disappointment and experienced reward with increasing experience (e.g., Kareev et al., 2014). 

Additionally, we assume that participants develop a cognitive representation of regret and 

disappointment (and their counterparts) as they gain experience/observe the outcomes of their 

choices. Such learning effects can be captured by assuming that 𝑾 = 0 before participants 

receive experience-based feedback, and that 𝑾 → 𝒑 as participants gain experience. We use the 

following delta learning rule (a simplified version of the Rescorla-Wagner updating rule; 

Rescorla & Wagner, 1972) to formalize this learning process: 

 

Here, 𝛼 is a learning rate determining how rapidly participants update the experience weight 

after observing feedback on their choice, and 𝐼!"# is an indicator variable that returns 1 if an 

outcome was observed during feedback and 0 otherwise. We chose to weight regret by its 

learned expectedness because observational and survey-based evidence consistently shows that 

Wij(t+1) =

(
Wijt + ↵(Iijt �Wijt), if feedback given

Wijt, otherwise
(7)
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people experience more regret when they make low-quality or unjustified decisions (e.g., Inman 

& Zeelenberg, 2002; Pieters & Zeelenberg, 2005). Intuitively, Equation 7 captures this effect by 

making the regret term more extreme as the regretful outcome becomes more subjectively likely. 

Additionally, our previous work shows that learning rules that explicitly update outcome 

probabilities can capture differences between description- and experience-based tasks (Haines, 

Kvam, & Turner, under review)—both of which we use in the current study.  

      Under the updating scheme described by Equation 7, the different outcomes 𝑥!"# can be 

thought of as features that are either observed or not after each choice, similar to category 

learning models (e.g., Turner, 2019). When they are observed (or not observed), their experience 

weights increase toward 1 (or decrease toward 0) in proportion to the learning rate and the 

prediction error. Therefore, experience weights converge toward the probability of observing 

each outcome, but they fluctuate trial-to-trial based on the recent history of outcomes. Note that 

although experience weights converge toward outcome probabilities, they are not proper 

probabilities as they do not sum to 1 (akin to the “decision weights” in prospect theory; 

Kahneman & Tversky, 1979). For intuition, imagine a participant making a choice between 

option A (“$3 with Pr(1)”) and option B (“$4 with Pr(.8), 0 otherwise”). If they choose A and are 

subsequently given feedback that A returned $3 and B returned $4, they increase experience 

weights corresponding to $3 and $4 and decrease the experience weight of $0. An important 

implication of this updating process is that a given counterfactual experience (e.g., receiving $3 

when the alternative choice results in $4) does not need to be fully experienced in order for it to 

be expected to occur in the future—instead, the experience weights of individual outcomes 

comprise what possible counterfactual outcomes are expected. In this way, the model can capture 

effects observed in tasks using partial feedback (i.e. where only the chosen option outcome is 
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revealed), which lead to slower changes in behavior relative to full information feedback tasks 

(e.g., Rakow et al., 2015). 

      In the context of the task we used, feedback is not given for the first 5 trials, so there is no 

updating and all experience weights therefore remain at 0. Starting from the 6th trial, the 

outcomes are shown for both chosen and unchosen options after each choice. Therefore, using 

equation 6, we assume that changes in choice behavior starting from the 6th trial result from the 

effects of participants learning to represent the probability of outcomes over time as they 

experience each outcome. This counterfactual learning process is similar in kind to 

reversal/fictive learning models (e.g., Gläscher, Hampton, & O’Doherty, 2009; Lohrenz, 

McCabe, Camerer, & Montague, 2007), although our proposed mechanism is more general due 

to its explicit representation of outcome probabilities which allows for a much closer 

correspondence to classic regret/disappointment theory (see Loomes & Sugden, 1982; 1986).  

      Disappointment Minimization Learning Model. The Disappointment Minimization 

Learning model assumes that subjective expected pleasure (𝑆𝐸𝑃 ) for each choice option 𝑖 on 

trial 𝑡 is given by: 

  

where the terms in the summation are the same as described above (see 𝑝!" and 𝑥!"
&  in Equations 

2 and 3), and 𝐷𝐼𝑆!# is a trial-dependent disappointment expectation that is determined according 

to the following delta updating rule: 

 

SEPit =
niX

j=1

pijx
w
ij +DISit (7)
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DISi(t+1) =

(
DISit + ↵(sign(obsit � cfit)�DISit), if fb given, j > 1

DISit, otherwise
(8)
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Here, we formalize disappointment as the sign of the difference between the observed outcome 

for each option (obs!#) and the alternative, counterfactual outcomes (cf!#) that could have 

occurred if the choice turned out differently. For example, if option A can return either -$4 or -

$12, and -$4 is observed on the current trial, disappointment for option A is equal to 

sign(obs!# − cf!#) = sign([−4] − [−12]) = 1 and 𝐷𝐼𝑆!# then increases toward 1 in proportion to 

the learning rate 𝛼 (indicating greater expectation for elation) and prediction error. Similar to the 

experience weights in the Counterfactual Representation Learning model, we initialize all the 

expectations to 0 at the start of each game (𝐷𝐼𝑆!1 = 0). Further, 𝑆𝐸𝑃  values are entered into 

the same softmax choice rule described by Equation 6, along with the persons-specific choice 

sensitivity parameter (𝜃).   

      Equation 8 produces an increasing preference for options that tend to return their highest 

outcome (i.e. the best outcome within an option), thus minimizing the probability of 

experiencing disappointment. Note that updating only occurs for a given option 𝑖 if it can return 

more than 1 potential outcome (i.e. 𝑗 > 1) and if feedback (fb) is presented on the current trial, 

indicating that disappointment cannot occur when an outcome is guaranteed. This behavior is 

similar to other reinforcement learning models that track the expected win frequency of each 

option, which leads to an increased preference for options that win most frequently (see 

Equations 7-9 from Haines, Vassileva, & Ahn, 2018). It also produces behavior consistent with 

win-stay-lose-shift heuristics (e.g., Worthy, Hawthorne, & Otto, 2013). 

      Regret Minimization Learning Model. The Regret Minimization Learning model assumes 

that 𝑆𝐸𝑃  is given by: 

 
SEPit =

niX

j=1

pijx
w
ij +REGit (9)
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where 𝑅𝐸𝐺!# is a trial-dependent regret expectation that is similar 𝐷𝐼𝑆!#, but is computed 

across options as opposed to within options: 

 

Here, we formalize regret as the sign of the difference between the observed outcomes across 

options. Like the models described above, we initialize all regret expectations to 0 at the start of 

each game (𝑅𝐸𝐺!1 = 0), and we use the softmax choice rule with choice sensitivity parameter 

(Equation 6) to transform 𝑆𝐸𝑃  into choice probabilities. Therefore, Equation 10 produces 

learning dynamics that lead to an increasing preference for the option that most frequently 

returns the best outcome on a trial-to-trial basis, thus minimizing the probability of experiencing 

regret. Such behavior is similar to models including the Best Estimate and Sampling Tools 

model, which minimizes immediate regret through a sampling mechanism that recalls the 

outcomes of each option on a past trial and prefers the one with the best outcome (see Equation 1 

from Erev et al., 2017). Equation 10 differs in that it learns a regret expectation (i.e. it integrates 

over the recent history of trials) as opposed to relying on a single previously experienced trial.  

      Disappointment/Regret Minimization Learning Model. The Disappointment/Regret 

Minimization Learning model combines the Disappointment and Regret Minimization models 

described above, such that 𝑆𝐸𝑃  is given by the subjective utility of each option plus the trial-

dependent 𝐷𝐼𝑆 and 𝑅𝐸𝐺 expectations. Therefore, it is most similar to the Counterfactual 

Representation Learning model, in that both disappointment and regret expectations are assumed 

to develop with experience as outcomes are observed. However, it is different from the 

Counterfactual Representation Learning model in that it does not explicitly represent each 

REGi(t+1) =

(
REGit + ↵(sign(obsit � obsi0t)�REGit), if fb given

REGit, otherwise
(10)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

.CC-BY-NC-ND 4.0 International licensecertified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprint (which was notthis version posted August 15, 2020. . https://doi.org/10.1101/560011doi: bioRxiv preprint 

https://doi.org/10.1101/560011
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

outcome probability to compute counterfactual expectations—instead, expectations are the 

recency-weighted average of past realized counterfactual comparisons (see Equations 8 and 10). 

      Expectation Maximization Learning Model. The Expectation Maximization Learning model 

functioned as a baseline model for the current study. We included it to determine if the 

counterfactual disappointment and regret learning models offered a better account of changes in 

participants’ preferences with experience relative to simple recency effects where each option 

and outcome is valued independently. Specifically, 𝑆𝐸𝑃  is given by: 

 

where 𝐸𝑉!# is a trial-dependent expected value term that is updated using the following delta 

rule: 

 

Here, 𝐸𝑉!# is updated toward the utility of the observed outcome for each option 𝑖, which 

produces increases in preference for the option that shows a higher average subjective value 

across recent trials. We use the same softmax choice rule described by Equation 6 to transform 

𝑆𝐸𝑃  into choice probabilities. Therefore, the Expectation Maximization Learning model is 

similar to models such as the naïve sampler model and other basic reinforcement learning models 

(see Erev & Roth, 2014), which tend to prefer options that return the best average payoff within 

a small sample of recently experienced outcomes.  

2.4 Model fitting procedure 

      We fit all models using hierarchical Bayesian analysis (HBA), with separate hierarchical 

models fit to each of the 7 sets of games. We chose to fit separate hierarchies to each set for 

SEPit =
niX

j=1

pijx
w
ij + EVit (11)
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(
EVit + ↵(obs!it � EVit), if fb given
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mostly computational purposes2, but also because each set consisted of different participants and 

games. HBA allows for individual-level (i.e. participant-level) parameter estimation while 

simultaneously pooling information across participants to increase certainty in individual-level 

estimates. Further, HBA has previously been shown to provide better parameter recovery than 

traditional methods such as individual-level maximum likelihood estimation (MLE) (e.g., Ahn, 

Krawitz, Kim, Busemeyer, & Brown, 2011), suggesting that individual-level HBA estimates can 

be interpreted with more confidence compared to traditional MLE estimates. We used Stan 

(version 2.15.1) to implement HBA. Stan is a probabilistic programming language that employs 

the No-U-Turn Hamiltonian Monte Carlo (HMC) sampler, which is a variant of Markov Chain 

Monte Carlo (MCMC), to efficiently sample from the joint posterior distribution across all 

specified model parameters (Carpenter et al., 2017).  

      We used a standard convention to parameterize the prior distributions for all model 

parameters (Ahn, Haines, & Zhang, 2017). Specifically, we assumed that each set of individual-

level parameters was drawn from a group-level distribution. We assumed normal group-level 

distributions, where prior means and standard deviations were set to normal distributions. We 

used non-centered parameterizations to decrease the dependence between group-level mean and 

standard deviation parameters (Betancourt & Girolami, 2013). Bounded parameters (e.g., 𝛼 ∈

(0, 1)) were estimated in an unconstrained space and then inverse Probit-transformed (i.e. the 

cumulative distribution function of the standard normal) to the constrained space to maximize 

 

 

2 A single model fit across all 686 participants would require more computer RAM that we have available for 

making posterior predictions (e.g., participants × games × trials × MCMC samples). 
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MCMC sampler efficiency (Ahn et al., 2014; 2017; Wetzels, Vandekerckhove, Tuerlinckx, & 

Wagenmakers, 2010). Once transformed to the constrained space, parameters with upper bounds 

greater than 1 were scaled accordingly. For example, the learning rate parameter for each of the 

models was parameterized as: 

 

Here, 𝜇( (−∞ < 𝜇( < +∞) and 𝜎( (0 < 𝜎( < +∞) are the group-level mean and standard 

deviation, respectively, and bold terms indicate vectors of individual-level parameters. This 

parameterization assumes that the prior distribution over each individual-level parameter is near-

uniform, and that variance is relatively low across participants (which provides regularization of 

extreme individual-level deviations toward the group-level mean). Since 0 < 𝛼 < 1, the scaling 

factor was set to 1.0 in the example above. We used the same non-centered parameterization for 

𝜔 and 𝑐 (including the same prior distributions), except they were scaled by 1.5 and 5.0, 

respectively. 

      We ran all models for 1,500 iterations across 4 separate sampling chains, with the first 500 

samples as warm-up (analogous to burn-in in Gibbs samplers) for a total of 4,000 posterior 

samples for each parameter. For all models, we checked convergence to the target joint posterior 

distribution by visually inspecting trace-plots and ensuring that all Gelman-Rubin (a.k.a. 𝑅") 

statistics were below 1.1, which suggests that the variance between chains is lower than the 

variance within chains (Gelman & Rubin, 1992). R and Stan codes for the computational models 

will be made available on the hBayesDM package (Ahn et al., 2017) upon publication. 

2.5 Model comparison 

µ↵ ⇠ Normal(0, 1)

�↵ ⇠ Half-Normal(0, 0.2)

↵0 ⇠ Normal(0, 1)

↵ = Probit
�1

(µ↵ + �↵ ·↵0
) · 1.0 (13)
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      We used two different methods to compare models, namely: (1) penalized model fit, which is 

a statistical measure of how accurately a model can predict participants’ choices on the next trial 

given their fitted model parameters, choice history, and a penalty term for model complexity; and 

(2) posterior predictive simulations, which involve graphically comparing the difference between 

participants’ entire choice histories and choice histories simulated from their fitted model 

parameters to determine which model best accounts for changes in behavior across time. We 

used multiple methods because previous studies consistently show that different model 

comparison methods can lead to different conclusions, and because fit statistics alone (e.g., mean 

squared error, AIC, BIC, etc.) do not always discern which model can best capture theoretically 

relevant patterns in the data (Ahn et al., 2008; 2014; Haines, Vassileva, & Ahn, 2018; Navarro, 

2019; Steingroever et al., 2014; Yechiam & Ert, 2007).  

      2.5.1 Penalized model fit. We assessed penalized model fit using the leave-one-out 

information criterion (LOOIC; Vehtari, Gelman, & Gabry, 2016), which is a fully-Bayesian 

analogue of traditional, commonly used information criteria (e.g., AIC and BIC). LOOIC 

approximates true leave-one-out prediction accuracy, and it can be computed using the log 

pointwise posterior predictive density (LPPD) of a fitted model. To compute the LPPD of each 

competing model, we calculated the log likelihood of each participants’ true choice on trial 𝑡 + 1 

conditional on their parameter estimates and choice history (i.e. trials ∈ {1,2, ... , 𝑡}). Therefore, 

LOOIC compliments the posterior predictive simulations described above, as it provides a 

quantitative measure of how well each model can capture participants’ trial-to-trial choices while 

accounting for parameter uncertainty. The log likelihood was calculated for each posterior 

sample and summed within each participant across games (preserving all posterior samples), 

resulting in an 𝑆 × 𝑁  LPPD matrix where 𝑆 and 𝑁  are the numbers of posterior samples and 
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participants, respectively. We used the loo R package, which is developed by the Stan team 

(Vehtari et al., 2016), to compute LOOIC values from the LPPD matrix. Note that LOOIC is on 

the deviance scale where lower values indicate better model fit (including complexity 

penalization). 

      2.5.2 Posterior predictive simulations. Posterior predictive simulations are similar to the 

post-hoc absolute fit measure used in previous studies (e.g., Steingroever et al., 2014; 

Steingroever, Wetzels, & Wagenmakers, 2013), but they differ in that they convey uncertainty in 

simulated choices that is attributable to the underlying parameter estimates. Further, they differ 

from methods such as the absolute simulation method, which uses estimated parameters to 

simulate behavior on the task without conditioning on participants’ actual trial-level choices 

(e.g., Haines, Vassileva, & Ahn, 2018; Steingroever et al., 2014; Steingroever, Wetzels, & 

Wagenmakers, 2013). We generated posterior predictions by first fitting each model to 

participants’ choice data, followed by simulating participants’ trial-to-trial choices using the full 

joint posterior distribution of their fitted model parameters and by conditioning on their actual 

trial-level choices. Note that we fit a different hierarchical model to each set of games, but 

parameters were fixed within-participants across games within each set. We then averaged across 

participants and compared the posterior predictive simulations and the true across-participant 

average choice proportions for each of the 105 games using graphical measures. Our use of 

posterior predictive simulations allows for us to determine if each model can capture changes in 

participants’ observed behavior in response to the feedback that they start to experience on the 

6th trial of each game, which could be obscured if we used fit statistics alone to conduct model 

comparison (e.g., Navarro, 2019). For example, a model could exhibit relatively good fit 

statistics but fail to capture learning effects observed in choice rates across trials. Posterior 
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predictive simulations therefore allowed us to identify specific areas of model misfit and 

determine whether models captured the effects of feedback on changes in behavior across trials. 

 

3. Study 1 Results 

3.1 Model comparison: Penalized model fit. 

      The Counterfactual Representation and Regret Minimization Learning models showed the 

best penalized model fit statistics across all 7 sets, and the Counterfactual Representation 

Learning model performed best overall (see Figure 2). These results corroborate our posterior 

predictive simulations.
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Figure 2 

Penalized model fit in the context of description-based games 

 

Note. Leave-one-out information criterion (LOOIC) scores relative to the best fitting model 

within each set of games. Lower LOOIC values indicate better model fit accounting for model 

complexity. Error bars represent ± 1 standard error of the difference between the best fitting 

model in the set and respective competing models. 
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3.2 Model comparison: Posterior predictive simulations. 

      Figure 3 shows both the true choice rates and posterior predictive simulations averaged 

across participants for 6 representative games within set 5. We only show these particular games 

for brevity, but we summarize our observations across all sets and games here (see Figure’s S1-

20 in the Supplementary Text for all 105 games). Overall, the Counterfactual Representation 

Learning, Regret Minimization Learning, and Disappointment/Regret Minimization Learning 

models best captured changes in participants’ behavior across trials, indicating that regret 

expectations play a crucial role in facilitating changes in behavior in response to full information 

feedback. Conversely, the Disappointment Minimization and Expectation Maximization models 

poorly tracked the observed choice proportions across trials, and in fact often showed little to no 

changes in predictions in response to feedback across games despite participants showing strong 

changes in preferences. Of the models containing regret terms, across all games, the 

Counterfactual Representation Learning model more rapidly converged toward participants’ 

observed changes in choice behavior, indicating that people may explicitly represent and update 

counterfactual outcome probabilities (i.e. the counterfactual “experience weight” in Equation 7) 

as opposed to tracking a running expectation of regret and disappointment. Explicit 

representation of counterfactual outcomes and probabilities is consistent with traditional models 

of regret and disappointment (Loomes & Sugden, 1982; 1986), along with empirical evidence 

that people make counterfactual comparisons between pairs of different possible outcomes 

(Ordóñez, Connolly, & Coughlan, 2000).  
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Figure 3 

Posterior predictive simulations for a subset of games 

 

Note. Posterior predictive simulations for a representative sample of games from set 5 (see Table 

S1 for information all sets and games, and Figure’s S1-20 for posterior predictive simulations for 

all sets and games). Different games are shown across columns (labels describing the game), and 

the competing models are shown across rows. Here, dark red points indicate the mean choice 

proportions across participants, and lighter red points with intervals represent the mean of the 

posterior predictive simulations across participants with 95% highest density intervals (HDI). CF 

Rep = Counterfactual Representation Learning model; DIS Min = Disappointment Minimization 

Learning model; REG Min = Regret Minimization Learning model; DISREG Min = 

Disappointment/Regret Minimization Learning Model; EXP Max = Expectation Maximization 

Learning model. 
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      Although the models with regret terms performed well for most games, there were some 

notable exceptions. Specifically, the models tended to underestimate preferences for games 

wherein one choice option always returned a better outcome than the alternative option. For 

example, Figure 2 shows a game where participants chose between option A (23 with Pr(1)) or 

option B (21 with Pr(.8), otherwise 0). Here, option A is always the best choice—it has the 

highest expected value (albeit by a small amount), and it will never result in either 

disappointment or regret. As expected, participants almost exclusively choose option A. 

However, the models all show a much less pronounced preference for option A (although it is 

still preferred over option B on average). We observed this pattern across many games, all 

sharing the feature that one option will always return a better outcome than the alternative. These 

patterns are consistent with the well-known certainty effect, wherein certain outcomes (i.e. those 

with Pr(1)) are given higher “decision weights” relative to uncertain outcomes (e.g., Allais, 

1953). Importantly, the certainty effect can be accounted for using probability weighting 

functions such as those proposed by prospect theory (Kahneman & Tversky, 1979). Therefore, 

although we did not include a probability weighting function in our models, such an extension 

could potentially allow the models to better capture certainty effects (e.g., replacing 𝑝!" in 

Equation 2 with 𝑊 (𝑝!"), where 𝑊 (. ) is a non-linear probability weighting function).  

        

4. Interim Discussion 

      Our first study revealed that participants’ changes in behavior in response to full information 

feedback during repeated description-based decisions are best explained by a model assuming 

that participants learn to represent the probability of counterfactual events (i.e. “experience 

weights” for disappointment, regret, and their counterparts elation and rejoice) as they gain 
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experience with each possible outcome. This “feature-based” account of counterfactual learning 

(where different numerical outcomes are conceptualized as different features that are observed or 

not after a choice) contrasts the competing “running expectation-based” models that we tested, 

all which assume that counterfactual events are integrated into a single value signal for each 

choice option that is learned with experience. Overall, our results are consistent with traditional 

disappointment and regret theory—both which assume explicit representations of the values and 

probabilities of counterfactual outcomes (Loomes & Sugden, 1982; 1986). More generally, our 

results are consistent with prior model-based findings that learning and decision-making in a 

number of games are driven strongly by regret, though our results go beyond earlier work in 

explicitly modeling the contributions of disappointment, regret, and expected value within a 

single model (Marchiori & Warglien, 2008).  

      Although findings from our first study offered insight into the cognitive mechanisms 

responsible for counterfactual thinking, the models did not incorporate experienced emotion, 

which limits our ability to test functional theories of counterfactual thinking as described in the 

introduction. Further, the task from study 1 gave participants complete information on the 

probabilities of various outcomes for each choice, yet real-world decisions are often made 

without given knowledge of how likely various outcomes are. Therefore, in study 2 we: (1) 

determine whether the models tested in study 1 can capture pure experience-based decisions 

(where probabilities and outcomes are not given and must be learned), and (2) identify how 

participants’ real-time emotional experiences interact with cognitive mechanisms to facilitate 

goal-oriented changes in behavior. 

 

5. Study 2 Method 
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5.1 Participants 

      Our second study included 51 participants’ data collected from two different research sites. 

Of these participants, 31 had facial expressions recorded, while 19 are from a previous study 

which did not record facial expressions (Ahn et al., 2012). We aggregated both datasets for the 

purposes of the current study. All participants gave informed consent prior to participating in the 

study. The study protocol was approved by local Institutional Review Boards at both research 

sites.  

 

5.2 Behavioral task 

      All participants completed four separate gambling games in randomized order. Participants 

were told that each game was independent of all other games, and they were given an 

opportunity for a break between each game. Each game consisted of 90 trials, where participants 

were asked to choose between two options (see Figure 4). Throughout each game, selecting one 

of the options won a fixed amount of points (i.e. safe option), whereas the other option had some 

probability of winning a high or low amount of points (i.e. risky option). Locations of the safe 

and risky options were randomized across participants but remained fixed within games. The 

probability of winning a high number of points for the risky option was fixed but unknown, and 

participants had to learn the probability from experience. After making a choice, point values for 

both the chosen and unchosen options were revealed (i.e. “full-information feedback”), which 

allowed participants to make counterfactual comparisons between the choices they made and 

could have made. Participants were instructed to make choices that maximized their points. 

Unbeknownst to participants, the expected value for each option was identical (see Table 1 for 

payoff distributions for each game). 
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Figure 4 
 
Behavioral task time course 
 

 
Note. Unlike study 1, the task from study 2 did not describe the outcomes and associated 

probabilities of each choice to participants. However, the tasks are similar in that they both offer 

full information feedback after a choice is selected.
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Table 1 
 

Payoff structure for each game in Study 2 
 

Game 
Option A (safe) Option B (risky) 

AH (PrH) AL (PrL) BH (PrH) BL (PrL) 
1 12 (1) – – 56 (.2) 1 (.8) 
2 11 (1) – – 26 (.4) 1 (.6) 
3 10 (1) – – 16 (.6) 1 (.4) 
4 9 (1) – – 11 (.8) 1 (.2) 

 
Note. AH = high outcome for option A. AL = low outcome for option A (same notation for option 

B). PrH = high outcome for given option. PrL = low outcome for given option. Note that 

outcomes and their corresponding probabilities were not described to participants. Instead, 

participants had to learn from experience-based feedback.
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5.3 Experience-based computational models. 

      We applied the same five models described in study 1 (see section 2.3) to data collected from 

the pure experience-based paradigm used in study 2 (e.g., Figure 4). However, because the 

models in section 2.3 assume that participants have access to the outcome values and 

probabilities of each choice option before receiving any feedback (e.g., Figure 1), we modified 

each of the models to reflect the absence of described outcome information in the experience-

based paradigm. We describe these modifications below. 

      For the Counterfactual Representation Learning model, the described probabilities only 

appear in Equation 2, wherein they function to weight the modified utility term. Importantly, 

because the model explicitly represents probabilities in the form of “experience weights” (i.e. 𝑾  

in Equation 7), the described probability from Equation 2 can simply be replaced with the 

subjective experience weight to extend the model to pure experience-based decision-making: 

 

Here, 𝑊!"# is the experience weight for the corresponding outcome 𝑥!" (see Equation 3). All 

other aspects of the model are identical to the description-based version (including the updating 

rule and initializing all 𝑾 = 0). Therefore, whereas the description-based version reduces to a 

standard prospect theory like model before any feedback, the experience-based version has a 

uniform preference for all options before feedback because all experience weights start at 0 (and 

𝑆𝐸𝑃  is thus 0 for all options). 

      For the remaining models, since they do not explicitly represent the probability of each 

outcome occurring, we dropped the terms containing the described probability (𝑝!") from each 

model. Using the Disappointment Minimization Learning model as an example, we dropped the 

SEPit =
niX

j=1

Wijtmijt (14)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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summation term from Equation 7, such that 𝑆𝐸𝑃!# = 𝐷𝐼𝑆!#. We did the same for all other 

models. Therefore, each model assumes that 𝑆𝐸𝑃  is given by a recency weighted average over 

past counterfactual experiences (except for the Expectation Maximization Learning model, 

which assumes that the 𝑆𝐸𝑃  of each option is given by a recency weighted average of observed 

outcomes for that option). 

       

5.4 Model-based facial expression analysis  

      5.4.1 Automated facial expression coding. To measure the valence of participants’ facial 

expressions during feedback, we used an automated facial expression coding (AFEC) model that 

we developed in a previous study (Haines et al., 2019). The AFEC model was trained to code for 

positive and negative affect intensity on a scale from 1 (no affect) to 7 (extreme affect), where 

positive and negative affect are coded separately rather than on a polarized positive–negative 

valence continuum. The AFEC model first uses FACET—a computer vision software (iMotions, 

2018)—to detect the presence of 20 different facial action units (Ekman, Friesen, & Hager, 

2002), which are then translated to affect intensity ratings using a machine learning model that 

we previously validated. In our validation study, the model showed correlations with human 

observer ratings of .89 and .76 for positive and negative affect intensity, respectively (for more 

details, see Haines et al., 2019).  

      Figure 5 shows the steps used to preprocess and apply the AFEC model to our participants’ 

facial expressions in response to outcome feedback. First, we used FACET to detect the presence 

of 20 different facial action units (AUs) during the feedback phase of the task. FACET-detected 

AUs are derived from the anatomically-based Facial Action Coding System (FACS; Ekman et 

al., 2002), which is arguably the most comprehensive and widely-used facial coding systems 
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available today. FACET outputs a time-series of values for each AU at a rate of 30 Hz, where 

values represent the probability (i.e. “evidence”) that a given AU is present in each sample. 

Second, we computed the area-under-the-curve (AUC) of each AU time-series and divided 

(a.k.a. normalized) the resulting value by the total length of time that a face was detected 

throughout the 1 second feedback phase in the task (per trial). Normalization ensures that clips of 

varying quality (e.g., 70% versus 90% face detection accuracy) do not affect the magnitude of 

the AUC values, which is important for the machine learning step. We excluded any trials where 

a participant’s face was detected for less than 10% of the total 30 samples in the given trial (~3% 

of trials excluded in total). After iterating step 2 for each trial and participant (step 3), we entered 

the resulting values as predictors in the AFEC model described above to generate intensity 

ratings for positive and negative affect (Haines et al., 2019). We used the positive and negative 

affect ratings as input into the computational models as described below. 
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Figure 5 

Steps for preparing facial expression data 

 

Notes. (1) Participants’ facial expressions were recorded during the outcome phase of the 

counterfactual task. We used FACET to capture the probability of each of 20 facial Action Units 

(AUs) being present in participants’ facial expressions in response to the outcome. (2) Evidence 

for each AU (i.e. probability of AU being present) over the 1 s outcome phase was converted to a 

single score by taking the area under the curve (AUC) of each evidence time series. The AUC 

values were normalized by the clip length. (3) Steps (1) and (2) were repeated for each trial 

within each game and participant. (4) We used two Random Forest models developed in a 

previous study to generated separate ratings for positive and negative affect intensity based on 

the AUC scores computed in step (3). 

FACET-detected action units(1)
AU 1 AU 4
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      5.4.2 Incorporating facial expressions into computational models. To determine whether 

emotional facial expressions reflected choice mechanisms of learning (𝛼), reward sensitivity (𝜔), 

or exploration/exploitation (𝑐), we developed 3 competing models that used the positive and 

negative affect intensity scores to modulate trial-by-trial model parameters (𝛼, 𝜔, 𝑐). To do so, 

we computed an overall valence score for each trial by taking the difference in positive and 

negative affect ratings for the given participant and trial. We chose this approach over modeling 

positive and negative affect as separate dimensions to reduce the number of possible models for 

model comparison purposes. We then standardized (i.e. z-scored) the valence ratings across 

participants, games, and trials before using them as input to the model. We parameterized each 

model such that the respective model parameter for trial 𝑡 was a linear combination of a baseline 

parameter and a parameter determining the effect of emotion valence intensity. For example, the 

learning rate parameter was determined by: 

  

Here, 𝛼! and 𝛼"indicate the baseline learning rate and effect of facial expression valence 

intensity on the learning rate for current trial (𝛼(𝑡)), respectively, and 𝐹𝐸(𝑡) is the standardized 

facial expression valence rating on trial 𝑡. Note that the inverse logit function transforms the 

output so that 0 < 𝛼(𝑡) < 1, which are the appropriate lower and upper bounds, so we scaled the 

output by 1.0 (i.e. no scaling). We used the same parameterization for 𝜔 and 𝑐, except the scaling 

factors were 1.5 and 5.0, respectively. On trials where participants’ faces were detected for less 

than 10% of the feedback stage, we assumed that parameters were not affected by facial 

expressions. Using the learning rate model as an example, if facial expression data on trial 𝑡 was 

discarded, then: 

  

↵(t) = logit�1(↵0 + ↵1 · FE(t)) · 1.0 (15)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

↵(t) = logit�1(↵0) · 1.0 (16)
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>
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In summary, each of the models makes an explicit assumption about which of the three decision 

mechanisms (i.e. learning, valuation, or exploration/exploitation) is affected by moment-to-

moment emotional valence intensity, which allowed us to take a model-based approach to test 

our competing hypotheses.  

5.5 Model fitting procedure 

      For the models incorporating facial expressions, we used an alternative parameterization for 

the parameter of interest to reflect the changes described in Equations 15 and 16. Using the 

model assuming that facial expression intensity reflected changes in the learning rate as an 

example, priors on the modified learning rates were set as follows: 

  

We used these priors because they led to near-uniform priors over the individual-level trial-by-

trial parameters (i.e. 𝛼(𝑡)) after being determined by Equation 15. The same parameterization 

was used for 𝜔 and 𝑐 in the models assuming relations between facial expression intensity and 

reward and choice sensitivity, respectively.  

      We ran all models for 2,500 iterations across 4 separate sampling chains, with the first 500 

samples as warm-up for a total of 8,000 posterior samples for each parameter. We checked 

convergence to the target joint posterior distributions by visually inspecting trace-plots and 

ensuring that all Gelman-Rubin (a.k.a. 𝑅") statistics were below 1.1, which suggests that the 

variance between chains is lower than the variance within chains (Gelman & Rubin, 1992). R 

and Stan codes for the computational models will be made available on the hBayesDM package 

(Ahn et al., 2017) upon publication. 

µ↵0 , µ↵1 ⇠ Normal(0, 1)

�↵0 ,�↵1 ⇠ Half-Normal(0, 1.35)

↵0
0,↵

0
1 ⇠ Normal(0, 1)

↵0 = µ↵0 + �↵0 ·↵0
0

↵1 = µ↵1 + �↵1 ·↵0
1 (17)
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5.6 Model comparison 

      We used the same model comparison procedures as described in study 1 to determine which 

model performed best in study 2. However, because we only had facial expression recordings for 

31 of the 51 participants, model comparison proceeded in two stages. First, we fit each model to 

all 51 participants and performed both LOOIC model comparison and posterior predictive 

simulations to determine whether the findings from study 1 generalized to study 2 wherein we 

used a pure experience-based task. Next, we parameterized the best performing model (the 

Counterfactual Representation Learning model) using the scheme described in section 5.4.2, and 

we then fit each model to the subset of 31 participants to identify relations between their facial 

expression intensity in response to feedback and cognitive mechanisms that could influence 

behavior. We used LOOIC to identify the best performing facial expression model, which we 

then used to infer how experienced emotion affected subsequent choice behavior. 

       

6. Study 2 Results 

6.1 Model comparison: Penalized model fit. 

      Corroborating our findings from study 1, the Counterfactual Representation Learning model 

outperformed all other models when assessed using LOOIC (see Figure 6), indicating that it 

provided the best fit to participants’ observed choice data accounting for model complexity.
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Figure 6 

Penalized model fit in the context of experience-based games 

 

Note. Leave-one-out information criterion (LOOIC) scores relative to the best fitting model 

within across the 51 participants and 4 games from study 2. Lower LOOIC values indicate better 

model fit accounting for model complexity. Error bars represent ± 1 standard error of the 

difference between the best fitting model and respective competing models.
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6.2 Model comparison: Posterior predictive simulations.  

      Figure 7 shows both the true and posterior predictive simulations across-participant (N=51) 

choice proportions for the safe versus risky options. Note that we fit each model to all 4 games 

simultaneously. Despite the safe and risky options having the same expected value within each 

game, participants showed a clear preference for the risky option in games where the high 

payoff/extreme outcome was more likely to occur—this pattern of behavior is consistent with 

previous studies showing that people tend to underweight rare events and/or over-value extreme 

outcomes when making decisions from experience (e.g., Barron & Erev, 2003; Hertwig et al., 

2004; Ludvig & Spetch, 2011; Ludvig, Madan, & Spetch, 2013). Similar to our results from 

study 1, the Counterfactual Representation and Regret Minimization Learning models best 

captured changes in participants’ behavior across trials, suggesting that regret expectations 

continue to play a crucial role in changes in preference in response to feedback even when 

outcome distributions are unknown. Further, the Counterfactual Representation Learning model 

performed slightly better than the Regret Minimization model for game 3, as the Regret 

Minimization model tended to increasingly prefer option B across trials despite participants not 

showing such changes (see Figure 7). Overall, our posterior predictions for the pure experience-

based task used in study 2 corroborate our findings from study 1, suggesting that the explicit 

representation of counterfactual values and probabilities is general across paradigms. 
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Figure 7 

Posterior predictive simulations for all four experience-based games 

 

Note. Posterior predictive simulations for each model across the 4 pure experience-based games 

in study 2. Different games are shown across columns (labels describing the game), and the 

competing models are shown across rows. Here, dark red points indicate the mean choice 

proportions across participants (N=51), and lighter red points with intervals represent the mean 

of the posterior predictive simulations across participants with 95% highest density intervals 

(HDI). CF Rep = Counterfactual Representation Learning model; DIS Min = Disappointment 

Minimization Learning model; REG Min = Regret Minimization Learning model; DISREG Min 

= Disappointment/Regret Minimization Learning Model; EXP Max = Expectation Maximization 

Learning model.
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6.4 Model-based facial expression analysis.  

      Although our main focus was on overall changes in facial expression valence intensity and 

not on specific changes in facial expressions, we show a visual depiction of the changes in each 

of the 20 facial action units (panel A) and overall valence intensity (panel B) in response to 

different types of feedback in Figure 8 for completeness. In general, the most reliable changes 

were in facial expressions near the eyes—action units 1, 2, 9, and 43 all exhibited increases in 

evidence ratings (i.e. an increase in probability of being present) in response to feedback, 

whereas action units 5 and 7 tended to show decreases. For all these examples, changes were 

greatest when participants experienced both disappointment and regret on the current trial (e.g., 

when they chose the risky option and received the low outcome). Activation changed most 

strongly for AU43, which indicates that participants tended to close their eyes during feedback. 

This effect is consistent with studies using eye tracking, which show that people often avoid 

looking at both received and forgone outcomes (Ashby & Rakow, 2016). 

      Participants tended to have positive changes in valence in response to receiving the rare 

outcome upon choosing the risky option across games (i.e. the high outcome in games 1-2 and 

the low outcome in games 3-4; see Table 1), whereas the most consistent negative change was in 

game 4 when participants received the safe outcome and the rare, low outcome was foregone. 

These differences in descriptives across games are somewhat counterintuitive, but they are 

broadly consistent with regret theory, which predicts that experienced affect is proportional to 

the expectedness of the outcome. Because expectedness is a function of experience in our task, 

these descriptives are only rough proxies for the relationships we aimed to test between facial 

expression valence and computational model parameters. Our next analysis addresses this point, 

after which we interpret Figure 8B through the lens of the computational model.
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Figure 8 

Changes in facial expressions in response to feedback 

 

Note. (A) Changes in computer-vision predicted action unit evidence starting from the moment 

that feedback is received, separated across the different types of counterfactual outcomes. 

High(Safe) = chose risky option and received high outcome, foregone safe outcome; Low(Safe) 

= chose risky option and received low outcome, foregone safe outcome; etc. Change in evidence 
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was computed by first centering the first observation for each trial of the feedback period at 0, 

and then averaging across trials and participants. Shading indicates ± 1 standard error of the 

mean across participants. (B) The action unit evidence scores were entered into a secondary 

model to compute an overall valence score for each trial, and here we show the average changes 

in overall valence from the choice selection phase (see Figure 4) to the outcome presentation 

phase across games and different types of outcomes. The uncertainty intervals indicate ± 1 

standard error of the mean across participants. Note that these descriptives are only rough 

proxies for the relationships we aimed to test between facial expression valence and 

computational model parameters, and we include them here for completeness.
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      Because the Counterfactual Representation Learning model showed better overall 

performance relative to competing models across a variety of games and task paradigms (e.g., 

description versus pure experience), we used it to further determine how facial expression 

valence intensity—our primary focus—influenced choice behavior through cognitive 

mechanisms of learning, reward sensitivity/valuation, or choice sensitivity 

(exploration/exploitation). Figure 9 shows that the Counterfactual Representation Learning 

model with a trial-by-trial valence effect on the learning rate parameter, as opposed to reward or 

choice sensitivity parameters, provided the best fit, suggesting that the facial expressions that 

people make in response to feedback are indicative of a dynamic learning mechanism. 
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Figure 9 

Penalized model fit for models facial expression models 

 

Note. Difference in LOOIC values between models including facial expressions to generate trial-

by-trial model parameters. The Base model represents performance of the Counterfactual 

Representation Learning model for the 31 participants with facial expression recorded, without 

assuming facial expressions related to model parameters. Learning Rate, Reward Sensitivity, and 

Choice Sensitivity models assume that trial-by-trial variability in facial expression intensity is 

associated with changes in 𝛼, 𝑤, and 𝑐, respectively. Error bars represent ± 1 standard error of 

the difference between the best fitting model and respective competing models.
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      Figure 10 depicts the effect of facial expression valence intensity on learning. Notably, the 

group-level posterior distribution of valence on learning (𝜇#!) was almost completely negative 

(95% highest density interval (HDI) = [-1.11, -0.13]), with over 99% of the posterior mass below 

0, indicating that participants tend to update their expectations more rapidly as they express more 

intense negative facial expressions and more slowly as they express more positive facial 

expressions. This finding is in line with functional theories of counterfactual thinking, which 

suggest that negative emotions facilitate goal-oriented changes in behavior (Connolly & 

Zeelenberg, 2002; Zeelenberg & Pieters, 2007). Additionally, it is consistent with previous 

studies identifying links between surprise and/or prediction error and experienced emotional 

valence (Mellers, 1997; 1999; Rutledge et al., 2014). Lastly, the relationship between valence 

intensity and learning rate facilitates interpretation of the descriptive results presented in Figure 

8B. When participants made a risky choice and received an unexpected outcome (i.e. the rare 

outcome), they exhibited positive changes in facial expression valence on average. According to 

our computational model, these positive (as opposed to negative) changes indicate relatively less 

expectation updating and subsequently a lower probability if changing choice behavior. This 

overall pattern is consistent with decision justification theory (e.g., Connolly & Zeelenberg, 

2002)—even when participants receive the low outcome in games 3 and 4, the risky choice is 

“justified” in that the low outcome is rare/unexpected. 
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Figure 10 

Group- and individual-level effects of emotional valence intensity on counterfactual learning 

 

Note. Posterior distribution (with 95% highest density interval highlighted in red) over the effect 

of facial expressions on the learning rate in the Counterfactual Representation Learning model 

(see Equations 15-16), a representation of the change in learning rate based on the group-level 

learning effect (𝜇(1
) and facial expression valence ratings across participants, and an example 

from one participant of the learning rate with and without trial-by-trial effects of facial 

expression valence. Note that as facial expression valence becomes increasingly negative, the 

learning rate becomes increasingly rapid and vice-versa.
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7. Discussion 

      Our findings are two-fold. First, we found that counterfactual comparisons between 

outcomes within (e.g., disappointment and elation) and across (e.g., regret and rejoice) choice 

options are weighted by “experience weights”, which correspond to the subjective probability of 

each outcome occurring. Because each outcome probability is estimated independently, our 

model (the Counterfactual Representation Learning model) predicts that counterfactual 

expectations can influence behavior even if a counterfactual experience has not been directly 

experienced. For example, if I know that choosing action A can result in either $4 or $0 while 

action B can result in only $3, Equations 4-5 compute expectations over all possible 

counterfactual experiences given that I have independently observed each outcome. This account 

is consistent with traditional models of description-based risky decision-making (Kahneman & 

Tversky, 1979; Loomes & Sugden, 1982; 1986), but contrasts contemporary models of 

experience-based risky decision-making—most which do not assume an explicit representation 

of values and probabilities and instead compute expectations as averages over past experiences 

of disappointment and/or regret (e.g., Boorman, Behrens, & Rushworth, 2011; Erev et al., 2014; 

Hayden, Pearson, & Platt, 2009; Lohrenz, McCabe, Camerer, & Montague, 2007; Yechiam & 

Rakow, 2012).  

      In addition to drawing parallels to traditional models of risk, the explicit representation of 

outcome probabilities provides insight into functional theories of counterfactual thinking, which 

predict that people experience more regret when they make poor quality or unjustified decisions 

(e.g., Inman & Zeelenberg, 2002; Pieters & Zeelenberg, 2005). According to our model, decision 

quality/justifiability can be thought of in terms of a dynamic experience weight that corresponds 

to the subjective probability with which a disappointing or regretful outcome may occur. 
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Importantly, probability estimation can be affected by a number of different processes including 

recency of experience, similarity to other outcomes, saliency/attention, and differential 

sensitivity to positive versus negative prediction errors (e.g., Estes, 1976; Haines et al., under 

review; Lichtenstein, Slovic, Fischhoff, Layman, & Combs, 1978; Zacks & Hasher, 2002). 

Therefore, to the extent that such processes can be manipulated, we should expect counterfactual 

expectations to shift over time in predictable ways (e.g., making a regretted outcome more 

salient should may increase the experience weight for that outcome more so than if it is ignored, 

etc.). Future studies using the Counterfactual Representation Learning model may benefit from 

directly manipulating how outcomes are presented or how participants are instructed to evaluate 

outcomes to determine how to best manipulate counterfactual learning. For example, Sokol-

Hessner and colleagues (2009) showed that people are less loss averse when they cognitively 

reframe losses as “one part of a large portfolio”, rather than “an important decision in isolation”. 

Such studies may reveal novel insights into decision-making interventions for individuals with 

psychiatric disorders characterized by emotion dysregulation. 

      Second, our results suggest that counterfactual representations are updated more rapidly 

when outcomes are experienced along with apparent intense negative affect (see Figure 10), 

which may explain why regret and disappointment can lead to negative functional outcomes yet 

also be looked back upon with appreciation (Kocovski et al., 2005; Lecci et al., 1994; Monroe et 

al., 2005; Saffrey et al., 2008). For example, negative functional outcomes may be the result of 

dysfunctional interactions between the cognitive and emotional components of regret that 

typically facilitate learning and behavioral change, whereas appreciation may result from looking 

back on regretted decisions that improved later decision-making. Indeed, the orbitofrontal cortex 

(OFC) and amygdala interact to produce both regret-averse decision-making and extinction 
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learning in healthy adults (Coricelli et al., 2005; Finger, Mitchell, Jones, & Blair, 2008), and 

altered OFC-amygdala functional/structural connectivity is associated with a number of 

psychiatric disorders (e.g., Dougherty et al., 2004; Greening & Mitchell, 2015; Hahn et al., 2011; 

Passamonti et al., 2012). Relatedly, regret has minimal effects on individuals who are highly 

impulsive and lack trait anxiety (Baskin-Sommers, Stuppy-Sullivan, & Buckholtz, 2016), yet it is 

overabundant in those with high trait anxiety (e.g, Roese et al., 2009), implicating an important 

role for regret-driven decision-making in psychological disorders characterized by emotion 

dysregulation. The rapid updating associated with negative emotion may be useful in fast-

changing environments, but it could be detrimental when environments are stable (e.g., a 

consistently high learning rate may lead to an increase in perceived uncertainty despite action-

outcome contingencies being consistent). Future studies may use regret-inducing tasks to further 

explore how the interactions between affective and cognitive components of regret present in 

individuals with different personality traits and/or psychiatric disorders (see Etkin, Büchel, & 

Gross, 2015). More broadly, our results are consistent with recent shifts toward conceptualizing 

emotions as fundamental, adaptive components of human cognition that help us make optimal 

inferences within constantly changing environments (e.g., Eldar, Rutledge, Dolan, & Niv, 2016).  

      To our knowledge, this is the first study of its kind to include dynamic facial expressions as 

direct input into a cognitive model, although similar model-based approaches are becoming 

increasingly common in cognitive neuroscience (Turner, Forstmann, Love, Palmeri, & Van 

Maanen, 2017). Further, work using automated facial expression coding is gaining traction in 

social and behavioral sciences due to its efficiency relative to human coders (e.g., Cheong, 

Brooks, & Chang, 2017; Haines et al., 2019). Future work would benefit from combining 

automated facial expression coding with behavioral paradigms that collect self-reports of 
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emotion (e.g., Rutledge et al., 2014), which would both allow for more strenuous validity tests of 

automated measures and create opportunities for exploring the relationships between 

unobservable and observable emotional states. The advantage of using facial expressions, as 

opposed to other measurement modalities such as EEG or psychophysiological measures (e.g., 

heart rate variability, skin conductance, facial electromyography, etc.), is that visual facial 

features consistently provide the single most optimal measure of emotional valence intensity, 

whereas other modalities are better suited for arousal (e.g., Chao, Tao, Yang, Li, & Wen, 2015; 

Kanluan, Grimm, & Kroschel, 2008).  

      Although our approach is limited in that we only tested hypotheses regarding valence 

intensity, future studies may incorporate multiple measurement modalities to better capture 

different dimensions of emotion. In fact, physiological measures such as skin conductance 

response, eye-tracking, EEG, and fMRI have previously been used to inform cognitive models 

(e.g., Cavanagh, Eisenberg, Guitart-Masip, Huys, & Frank, 2013; Frank et al., 2015; Krajbich, 

Armel, & Rangel, 2010; Jian Li et al., 2011). Moreover, work on joint modeling suggests that 

model parameters can be estimated more precisely as more measurement modalities are included 

(Turner, Rodriguez, Norcia, McClure, & Steyvers, 2016). Given the limitations of traditional 

summary measures of behavioral performance for making inference on individual differences 

(e.g., Hedge, Powell, & Sumner, 2017), joint modeling of multiple data modalities may be a 

fruitful way forward in developing and testing increasingly complex cognitive models. For 

example, future studies may use the joint modeling approach to explore the social dynamics of 

decision-making, wherein regret expectations and facial expressions—among other response 

modalities—play a crucial role in negotiation and trust (Larrick & Boles, 1995; Martinez & 

Zeelenberg, 2014; Reed, DeScioli, & Pinker, 2014; Reed, Zeglen, & Schmidt, 2012). 
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      Finally, it is worth noting potential extensions to the Counterfactual Representation Learning 

model. As currently implemented, the probability of each possible outcome (i.e. feature) is 

learned independently. Although this mechanism works rather well when there are a small 

number of possible outcomes, it could quickly become inefficient when outcomes are continuous 

(e.g., if outcomes for each option were drawn from a normal distribution). To remedy this 

potential shortcoming, the learning mechanism could be modified to include a similarity or 

attention mechanism, wherein the probabilities of all possible outcomes are upweighted in 

proportion to their proximity to the observed outcome (e.g., see Turner, 2019). Such learning 

mechanisms may allow for the model to better generalize to more complex decision contexts 

than we explored, including multi-stage, multi-attribute, and multi-alternative contexts.
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