
Journal of Mathematical Psychology 54 (2010) 28–38
Contents lists available at ScienceDirect

Journal of Mathematical Psychology

journal homepage: www.elsevier.com/locate/jmp

Cognitive mechanisms underlying risky decision-making in chronic
cannabis usersI

Daniel J. Fridberg a, Sarah Queller a, Woo-Young Ahn a, Woojae Kim a, Anthony J. Bishara b,
Jerome R. Busemeyer a, Linda Porrino c, Julie C. Stout a,d,∗
a Department of Psychological and Brain Sciences, Indiana University, Bloomington, United States
b Department of Psychology, College of Charleston, United States
cWake Forest University School of Medicine, United States
d School of Psychology, Psychiatry and Psychological Medicines, Monash University, Victoria, Australia

a r t i c l e i n f o

Article history:
Received 7 May 2008
Received in revised form
25 September 2009
Available online 2 December 2009

Keywords:
Decision-making
Cannabis
Iowa Gambling Task
Cognitive modeling

a b s t r a c t

Chronic cannabis users are known to be impaired on a test of decision-making, the Iowa Gambling
Task (IGT). Computational models of the psychological processes underlying this impairment have the
potential to provide a rich description of the psychological characteristics of poor performers within
particular clinical groups. We used two computational models of IGT performance, the Expectancy
Valence Learning model (EVL) and the Prospect Valence Learning model (PVL), to assess motivational,
memory, and response processes in 17 chronic cannabis abusers and 15 control participants. Model
comparison and simulationmethods revealed that the PVLmodel explained the observed data better than
the EVLmodel. Results indicated that cannabis abusers tended to be under-influenced by loss magnitude,
treating each loss as a constant and minor negative outcome regardless of the size of the loss. In addition,
theyweremore influenced by gains, andmade decisions that were less consistent with their expectancies
relative to non-using controls.

© 2009 Elsevier Inc. All rights reserved.
1. Cognitive mechanisms underlying risky decision-making in
chronic cannabis users

Substance abusers often are impaired on laboratory measures
of decision-making (Bechara et al., 2001; Petry, 2003; Petry,
Bickel, & Arnett, 1998; Rogers et al., 1999). For example, in a
laboratory decision-making task known as the IowaGambling Task
(IGT; Bechara, Damasio, Damasio, & Anderson, 1994), substance
abusers often make choices that lead to small, immediate gains at
the cost of larger losses over time (Grant, Contoreggi, & London,
2000). Cannabis (marijuana) users, like other substance-using
populations, perform more poorly than non-using controls on
the IGT (Lamers, Bechara, Rizzo, & Ramaekers, 2006; Whitlow
et al., 2004), even after prolonged abstinence from the drug
(Bolla, Eldreth, Matochik, & Cadet, 2005). This impairment may
be due to underlying deficits or differences in psychological
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processes (e.g., memory impairments, loss insensitivity, etc.),
but pinpointing such processes can be difficult with traditional
behavioral measures from the IGT. Recent work has attempted
to disentangle component processes of the IGT by means of
computational cognitive models (Busemeyer & Stout, 2002;
Garavan & Stout, 2005; Yechiam, Busemeyer, Stout, & Bechara,
2005). In this report, we use mathematical models of choice
behavior on the IGT to better understand the risk taking behavior
of cannabis users. We present a comparison of two such
models, and then compare estimatedmodel parameters of chronic
cannabis users and controls to identify the particular psychological
processes which may be impaired in cannabis users.
For the IGT, the participant must make a series of choices

from four decks of cards with the goal of maximizing his or her
net payoff across trials. On each trial, the participant selects a
card from any of the four decks and is informed how much (s)he
won or lost by choosing that card. Every choice leads to a gain
that sometimes is coupled with a simultaneous loss (see Table 1).
Selecting from the two ‘‘disadvantageous’’ decks will result in a
larger per-selection gain, but on average leads to a net loss over
ten selections, whereas selecting from the two ‘‘advantageous’’
decks results in a smaller per-selection gain but an overall net gain
over ten selections. To perform well on the IGT the participant
learns to select primarily from advantageous decks on the basis
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Table 1
Payoffs used in the Iowa Gambling Task.

Deck Win per card Losses Expected value per selection

A (Disadvantageous) $100 Probability= 0.5 to lose $150, $200, $250, $300, or $350 (Frequent) −$25
B (Disadvantageous) $100 Probability= 0.1 to lose $1250 (Infrequent) −$25
C (Advantageous) $50 Probability=0.2tolose$25or$75;Probability=0.3tolose$50(Frequent) +$25
D (Advantageous) $50 Probability= 0.1 to lose $250 (Infrequent) +$25
of the net gains and losses they experience across the task.
Thus, the IGT incorporates cognitive (i.e., learning and memory)
and motivational processes (i.e., responsivity to gains and losses)
associated with the anticipation of outcomes following choices
over time. The decision to use or abstain from also drugs invokes
processes related to learning from previous experiences with the
drug, and the perceived rewards (i.e., pleasure) and punishments
(i.e., financial, interpersonal, legal trouble) associated with drug
use.
Computational cognitive models allow us to disentangle

the processes contributing to IGT performance and to identify
specifically those processes which may account for the poorer
overall performance of an individual or group on the task
(Busemeyer & Stout, 2002). Our research group has developed
a mathematical model called the Expectancy Valence Learning
(EVL) model (Busemeyer & Stout, 2002) to investigate the
psychological processes underlying individuals’ decisions on the
IGT. The model has three assumptions. First, a utility function
represents an individual’s subjective evaluation of gains and losses.
Second, a learning rule allows the development of expectancies
for each deck that are updated on the basis of experienced
utilities. Third, these expectancies determine the probabilities
that the participant will choose a given deck on each trial via
a choice rule. The EVL model is based on principles derived
from the judgment and decision-making literature and yields
theoretically-derived dependent measures (model parameters)
that describe psychological processes underlying IGT performance.
These parameters reflect the degree to which the decision maker
attends to gains versus losses (Attention to Gains parameter),
his or her learning rate (Recency parameter), and the degree of
consistency between deck selections and the expected outcomes
associated with each deck (Consistency parameter). By applying
the model to several datasets from clinical populations who
demonstrate impaired IGT performance, we have identified
distinctive patterns within the empirical data which differentiate
various groups of drug abusers, subjectswithHuntington’s disease,
and subjects with orbitofrontal brain lesions from their respective
control groups (for a review, see Yechiam et al., 2005).
Using the EVL model of IGT performance, our group has

shown previously that disruptions in psychological processes
may underlie the poorer performance of cocaine abusers (Stout,
Busemeyer, Lin, Grant, & Bonson, 2004) and polysubstance abusers
(Stout, Rock, Campbell, Busemeyer, & Finn, 2005) on the IGT. With
regard to cannabis users specifically, a recent analysis of decision
processes in a sample of 21 young (mean age = 24 years)
cannabis-using college students found no significant differences
between that group and non-using controls on any EVL model
parameters (Bishara et al., 2009). In addition, a review of the
EVL modeling of the IGT performance in various clinical samples
included a brief summary of 25 chronic cannabis abusers who
differed from controls on the Recency and Attention to Gains
parameters (Yechiam et al., 2005). This report includes the 17
chronic cannabis abusers from that report who had been abstinent
only long enough for the acute effects of the drug to have worn
off (i.e., they were no longer intoxicated, or high) but before they
would have started having withdrawal symptoms, and extends
this previous work principally by allowing an evaluation of a new
model that may have better explanatory ability for IGT behavior.
Investigations of cognition among chronic cannabis abusers
have identified disruptions in psychological processes which could
contribute to their poorer IGT performance. For instance, chronic
users are impaired relative to non-users on neuropsychological
measures of memory and learning (for reviews, see Grant, Gonza-
lez, Carey, Natarajan, & Wolfson, 2003; Solowij & Battisti, 2008).
This impairment could compromise their ability to maintain and
update representations of the expectancy for each deck across IGT
trials. The effects of chronic cannabis use on sensitivity to reward
and punishment are less clear, although acute administration stud-
ies have shown that cannabis exposure is associatedwith increased
risk taking and decreased sensitivity to choice outcomes (Lane
& Cherek, 2002; Lane, Cherek, Tcheremissine, Lieving, & Pietras,
2005). These results are supported by a recent functional mag-
netic resonance imaging (fMRI) study which showed that chronic
cannabis users exhibit patterns of neural activity consistent with
hypersensitivity during reward anticipation and hyposensitivity to
loss outcomes (Nestor, Hester, & Garavan, in press). Chronic users
may show a similar pattern of behavior on the IGT, manifested as
a bias toward the disadvantageous decks. Lastly, chronic cannabis
users score highly on personality measures related to risk-seeking,
which may lead them tomake impulsive selections that are incon-
sistent with their expectancies regarding deck outcomes (Satinder
& Black, 1984).
We recently developed the Prospect Valence Learning (PVL)

model, which is a modification of the EVL model (Ahn, Busemeyer,
Wagenmakers, & Stout, 2008).1 The PVL model employed in this
report uses the same learning rule as the EVL model, but uses
a different utility function and a different choice rule. Ahn et al.
(2008) showed that the PVL model resulted in better post hoc
fits, simulation performance, and generalizability than comparison
models when applied to IGT data from healthy normal subjects.
There are two main purposes of this report. The primary purpose
is to compare the new PVL model to the EVL model using both a
clinical population and a control population for the first time. This
is an important step for two reasons: first, we need to determine
whether the superior predictive power of the PVL model over the
EVL models continues to hold for clinical populations; second, we
need to examine if the parameters estimated from the PVL model
are more or less informative than the parameters estimated from
the EVL model with respect to revealing important differences
between clinical and control populations.
The equations for the EVL and PVLmodels are shown in Table 2.

The models explain choices in the IGT in slightly different ways.
First consider the concept ‘valuing a card’ shown in Table 2. As
each card is selected in the IGT, the decision maker assesses the
value of that card. The decision maker’s valuation of a card will
vary depending on the relative amount of attention the (s)he pays
to gains versus losses. Some individuals will only register gains,
others will only register losses, and still others will attend to both

1 The PVLmodel refers to amodel that has the same framework as the EVLmodel
but uses the prospect utility function. In this study, we are referring to the prospect
utility (PU) – delta learning rule (DEL) – trial-independent choice rule (TIC) in Ahn
et al. (2008) as the PVL model for the purpose of simplicity. We also tried a PVL
model with a different learning rule (decay reinforcement learning rule) but the
main conclusions remain the same and thus they are not reported here for brevity.
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Table 2
EVL and PVL model equations for estimating parameters. Model-fitting selects parameter values that maximize the likelihood of the decision maker’s responses, given the
model.

Concept Model Model equation Free parameter(s)

Valuing a card
EVL u(t) = w · win(t)− (1− w) · loss(t) w = Attention to gains

PVL u(t) =
{
x(t)α if x(t) ≥ 0
−λ|x(t)|α if x(t) < 0

λ = Loss aversion
α = Utility shape

Creatingadeckexpectancy,E,fordeckjontrialt EVL & PVL Ej = Ej(t − 1)+ A · δj(t) · [u(t)− Ej(t − 1)] A = Recency

Probability of choosing deck j EVL & PVL Pr[D(t + 1) = j] = eθ(t)·Ej(t)∑4
j=1 e

θ(t)·Ej(t)

Consistency between choices and expectancies EVL θ(t) =
( t
10

)c
c = Consistency

PVL θ(t) = 3c − 1

Note: j refers to deck A, B, C, or D. The variable δjt is a dummy variable equal to 1 if deck jwas chosen on trial t , otherwise 0.
wins and losses, with the weighting of attention varying across
decision-makers. TheAttention toGains parameter (w; see Table 2)
in the EVL model captures the relative amount of attention a
decision maker pays to gains compared to losses on a given trial. If
w = 0 all attention is paid to losses, whereas ifw = 1 all attention
is paid to gains. Based on the level of attention to gains, the
decision maker generates a value for that card. In the PVL model,
the subjective utilities are represented by a non-linear prospect
utility function. The shape parameter (α) governs the curvature of
the utility function (0 < α < 1: as α approaches 1, subjective
utility increases in direct proportion to the outcome value; as α
approaches 0, subjective utility increases in a stepwise fashion
so all gains are subjectively equal and all losses are subjectively
equal). The utility function of the PVL model also contains a loss
aversion parameter (λ) which indicates the subject’s sensitivity to
losses compared to gains (0 < λ < 10: as λ approaches 0 losses
are experienced as neutral events with utility = 0; for λ = 1
losses and gains have the same impact; for λ > 1 losses have
greater impact than gains on the subjective utility of an outcome,
leading to loss aversion). The advantage of using the PVL’s non-
linear utility function is that it accounts for the gain/loss frequency
effect. That is, winning $100 five times is often perceived as better
than winning $500 once, even though the net gain is equivalent
(Erev & Barron, 2005). The EVL’s linear utility function assumes
that both of these events have the same overall utility. Therefore,
the PVL model explains participants’ preferences for decks with
low net-loss frequency (e.g., Deck B) over decks with high net-loss
frequency (e.g., Deck A) even if their expected values are the same
(Ahn et al., 2008).
Next consider the concept ‘creating an expectancy’ shown in

Table 2. With the experience of each card’s payoff, the decision
maker can then revise the expectancy about the deck from which
the card was chosen. Each time a new card is drawn, the old deck
expectancy is updated based on the value of the new card. The
Recency parameter (A) is a parameter of the delta learning rule
(Rescorla & Wagner, 1972) for both the EVL and PVL models. The
Recency parameter (0 < A < 1) is an index of learning rate,
indicating how much weight is given to past experiences with a
given deck versus how much weight is placed on the value of the
most recent selection from that deck. A high Recency parameter
indicates that the value of the most recent card selection has a
large influence on the expectancy for that deck, and forgetting
of previous card selections is rapid. In contrast, a low Recency
parameter indicates that the value of themost recent card selection
has a small influence on the expectancy for that deck, and
forgetting is more gradual. In this way, expectancies about each
deck develop as each new card is selected.
The third concept in Table 2 is the ‘probability of choosing a

deck’. In order to select a deck on each trial, the decision maker
compares the current expectancies for each deck. A good decision
maker makes choices consistent with his or her deck expectancies
Table 3
Mean values on demographic measures. Standard deviations are in parentheses.

Group
Controls
(n = 15)

Cannabis users
(n = 17)

Age (years) 29.6 (7.6) 33.3 (8.2)
Education (years) 14.9 (2.5) 13.7 (1.8)
Estimated IQ 110 (10.9) 101.2 (13.8)
Drinks/week 2.9 (4.2) 4.3 (6.3)
Cigs./day 8.3 (10.1) 12.2 (8.7)
Age at first cannabis use
(years)

18.6 (5.0) 16.4 (5.4)

Years of cannabis use – 13.2 (9.0)

as the trials progress and as confidence in the expectancies
increases with experience. The Consistency parameter (c) is an
indicator of the fidelity between the decision maker’s selections
and expectancies as the task progresses. A high value indicates
that the decision maker’s choices are deterministic, resulting in
maximal choices from the deck with the highest expectancy. A
low Consistency value indicates that the decision maker chooses
more randomly, possibly reflecting impulsivity or boredom with
the task. The EVLmodel uses a trial-dependent choice rule inwhich
the consistency increases or decreases over trials (−5 < c <
5; Busemeyer& Stout, 2002). In contrast, the PVLmodel uses a trial-
independent choice rule in which consistency remains constant
over trials (0 < c < 5).
In summary, for the current study, we applied the EVL and PVL

models to the IGT performance data obtained from 17 chronic,
heavy cannabis users and 15 control subjects who had only
minimal lifetime exposure to cannabis. Empirical results from
ten of the subjects in this sample were included in a previous
report (Whitlow et al., 2004), which revealed poor gambling task
performance in the cannabis group as compared to the control
group. We replicate this finding in an enlarged sample of chronic
cannabis users. We then report a comparison of the ability of
the EVL and PVL models to account for each group’s performance
on the IGT. Finally, we present an analysis of the individual
differences in psychological processes underlying cannabis users’
poor performance on the IGT.

2. Methods

2.1. Participants

Participants consisted of 17 chronic cannabis users and 15
control subjects (see Table 3). Inclusion in the chronic cannabis
group required reported cannabis usage for at least 25 out of every
30 days for at least 5 years. This group reported an average of
13.2 ± 9.0 (M ± SD) years of cannabis abuse. The control group
included individuals who reported a maximum of 100 lifetime
uses of cannabis, with no use in the past year. On average, they
reported 19.7 ± 29.4 lifetime uses of cannabis. Thus, the control
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group had minimal lifetime cannabis exposure (Pope, Gruber,
& Yurgelun-Todd, 1995; Pope & Yurgelun-Todd, 1996). Potential
subjects were excluded based on reported history of head trauma,
neurological disorders, psychiatric disorders (including substance
abuse disorders other than cannabis in the cannabis group), and
systemic diseases which might affect the central nervous system.
All participants gave written informed consent.
Members of the chronic cannabis user group were asked to

abstain from cannabis use for 12 h prior to the study. We ex-
pected twelve hours to be long enough to avoid any effects
of acute intoxication and short enough to precede significant
withdrawal symptoms (Budney, Moore, Vandrey, & Hughes,
2003; Grotenhermen, 2003). Among users, the last reported
cannabis use averaged 13.9 ± 2.3 (M ± SD) hours prior to
testing and ranged from 11 h to 18 h prior to testing. Absti-
nence was confirmed by urine drug screens (Laboratory Corpo-
ration of America, Research Triangle Park, NC). The presence of
symptoms related to depression, anxiety, and alcohol use disorders
were assessed via the Beck Depression Inventory-II (BDI-II; Beck,
Steer, & Brown, 1996), Spielberger State-Trait Anxiety Inventory
(STAI; Spielberger, 1983) and the Alcohol Use Disorders Identifi-
cation Test (AUDIT; Bohn, Babor, & Kranzler, 1995), respectively.
Users did not significantly differ from controls on years of edu-
cation, gender distribution, number of cigarettes smoked per day,
number of alcoholic drinks consumed per week, or scores on the
BDI-II, STAI, or AUDIT (all ps > 0.05; see Table 3). However, the
difference in estimated full-scale IQ was marginally significant be-
tween the groups (estimated IQ [M±SD] for controls= 110 (10.9);
users= 101.2 (13.8); t(30) = 1.99; p = 0.06).

2.2. Procedures

Subjects participated in a study that included a brief neuropsy-
chological battery (described inWhitlow et al., 2004) prior to com-
pletion of the IGT. The IGTwas administered while subjects under-
went fMRI; however, only the behavioral results are analyzed in
this report.
The procedures for the IGT have been described in detail

previously by Bechara and colleagues (Bechara et al., 1994), and
are described only briefly here. Subjects began the task with $2000
in play gambling money. They were told that the purpose of the
game was to win as much play money as possible, and that the
subject who accumulated the largest amount over the course of
the study would win a real monetary bonus of $50. This bonus was
intended to motivate subjects to perform well on the task. The IGT
was presented on a computer display, and subjects made a series
of 100 card selections from four decks of cards labeled A, B, C, and
D by pressing one of four buttons on a button box. Choosing a card
from deck A or B always yielded a gain of $100, whereas choosing
a card from deck C or D always yielded a gain of $50. Each deck
was associated with a schedule of penalties, such that some card
selections yielded both a gain and a loss. Every 10 cards selected
from deck A or B resulted in a net loss of $250 whereas every 10
cards selected from deck C or D resulted in a net gain of $250 (see
Table 1). Thus, the advantageous decks C and D provided smaller
gains but also smaller losses relative to the disadvantageous decks
A and B. Following each selection, the computer displayed the gain
and, if present, the loss for that selection and also displayed total
earnings. For each subject, all 100 card selections were recorded.

3. Results

3.1. Analysis of IGT performance

To analyze IGT performance, the 100 card selections were
divided into a series of five blocks. Blocks 1 through 4 each
Fig. 1. IGT performance for controls and cannabis users, by block. Dots represent
mean proportion of advantageous selections in each block; error bars represent±1
SEM. Controls outperformed Users on Blocks 2–5 (p < 0.01).

consisted of twenty card selections (trials 1–20, 21–40, 41–60,
and 61–80, respectively) whereas Block 5 consisted of fifteen card
selections (trials 81 through 95). Performance for trials 96 through
100 was not analyzed because many subjects depleted at least one
of the 4 decks between the 96th and 100th trials, changing the
structure of the task at that point from a choice among 4 decks to
a choice among 3 decks. The percentage of advantageous choices
was computed for each block. A 2 (group: User vs. Control) × 5
(Block) repeated measures analysis of (ANOVA) was performed to
examine group differences in learning across blocks. In addition,
we conducted similar analyses to contrast group preferences for
specific decks across blocks.

3.2. IGT performance

Although Controls and Users began the IGT by selecting
predominantly from the disadvantageous decks, only Controls
subsequently learned to select from the advantageous decks (see
Fig. 1). Controls made more advantageous selections than Users
as the task progressed (FBlock×Group[4, 120] = 3.44, p < 0.05).
Follow-up ANOVAs revealed that Controls outperformed Users
on Blocks 2 through 5 of the IGT (ps < 0.01) and exhibited a
trend toward better performance in Block 1 (p = 0.06). These
results are consistent with previous reports indicating impaired
IGT performance among chronic cannabis users (Bolla et al.,
2005; Lamers et al., 2006; Whitlow et al., 2004). The groups
differed in their preference for specific decks throughout the task
(FDeck×Block×Group[7.2, 215.3] = 3.73, p < 0.001 [degrees of
freedom corrected using the Greenhouse–Geisser correction for
violated sphericity]; see Fig. 2). The most popular decks among
all participants were Decks B and D (infrequent punishment;
disadvantageous and advantageous, respectively). Compared to
Controls, Users made significantly more selections from Deck B in
blocks 2 and5 and fewer selections fromDeckD in blocks 2 through
5 (all ts > 2.43; ps < 0.05).

3.3. Model evaluation

To determinewhichmodel to use in comparing control and user
groups, two methods were used to evaluate the EVL and the PVL:
post hoc model fits and simulation performance of each model.
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Fig. 2. Comparison of group selections from each deck across each block of the IGT.

Post hoc model fits. First, maximum likelihood estimates of
the parameters from each model were obtained by searching
for parameters that minimized the following lack of fit function
(see Busemeyer & Stout, 2002). Define Yi(t) as column vector with
Yij(t) = 1 if deck j was chosen on trial t , otherwise zero. Define
Xi(t) as another vector containing the payoffs received by subject i
on trial t . Define

Pr[D(t) = j|Yi(t − 1), Xi(t − 1), . . . , Yi(1), Xi(1)], (1)

as the probability of choosing deck j to be selected on trial t by
a model given information from subject i on all previous trials.
Define the lack of fit function for modelm as

G2i,m = −2 ·
∑
t=2,t

∑
j=1,4

Yij(t)

× ln{Pr[D(t) = j|Yi(t − 1), . . . , Yi(1), Xi(1)]}, (2)

where t = the total number of trials. The search to minimize the
lack of fit function was done using a Nelder–Mead algorithm and
multiple quasi-random starting points.
The EVL and PVL models were compared separately to a

Bernoulli baseline model using the Bayesian Information Criterion
(BIC; Schwartz, 1978) to adjust for differences in the number of
parameters (model complexity).

BICi,m = G2i,m + km ∗ ln(N − 1), (3)

where N equals the total number of trials (in this case, 95) and km
equals the number ofmodel parameters formodelm. The BICs that
we report are the BICs produced by the taking the differences with
respect to baseline: (BICBaseline − BICEVL) and (BICBaseline − BICPVL).
Thus positive values indicate improvement of a model (either EVL
or PVL) over the baseline. The Bernoulli model assumes that a
participant’s probability of selecting from a specific deck on a given
trial is equal to the final proportion of cards the decision maker
actually selected from that deck. For example, if a participant’s
proportion of cards selected from each deck were p(Deck A) =
0.10, p(Deck B) = 0.30, p(Deck C) = 0.10 and p(Deck D) = 0.50,
then the Bernoulli model posits that this person has the same 0.50
probability of selecting from Deck D on all trials.
Themodel comparison analyses produced discrepant results for

the Control and User groups. Non-parametric sign tests revealed
that the PVL model fit significantly better than the EVL model
among Controls (PVL median BIC relative to Bernoulli model =
1.24, EVL median BIC relative to Bernoulli model = −9.43; p <
0.001). However, the EVLmodel fit significantly better than the PVL
model among Users (PVLmedian BIC relative to Bernoulli model =
−6.70, EVL median BIC relative to Bernoulli model = −3.32; p <
0.05). Overall, both the EVL and PVL models provided a poor fit
for Users’ data. However, we focus our analyses on the differences
between the groups on the PVLmodel parameters for the following
reasons. First, the PVL and EVL models assume learning across
trials. Users on average did not exhibit learning during the IGT
as revealed by a non-significant effect of Block on the proportion
of advantageous choices for that group, F(4, 64) = 0.99, n.s.
(see Fig. 1). Therefore, since Users’ preference for disadvantageous
decks remained relatively consistent over the course of the task, it
is unsurprising that the Bernoulli model fit Users’ data better than
the PVL and EVL models.
Second, Users’ tendency to overvalue gains while discounting

losses resulted in utility functions that were approximately linear
when generated by both the PVL and EVL models (see Fig. 4(a)).
Under the EVL model, Users’ Attention to Gains parameter was
very high (median w = 0.96), while under the PVL model their
Loss Aversion (λ) parameter was very low and their Utility Shape
parameter (α) was very high (see below). These values represent
a special case whereby the utility function of the PVL model
mimics that of the EVLmodel. However, the PVLmodel’s extra free
parameter relative to the EVL model means that the PVL model
was penalized to a greater extent than the EVL when the BIC was
calculated. Indeed, non-parametric sign tests revealed that the G2
values for bothmodels relative to the Bernoulli model were similar
in both the Control and User groups, ps > 0.10.
Third, we conducted a hierarchical Bayesian analysis to verify

that the PVL model provided a better fit for the data than the
Bernoulli model when all subjects from both groups were used
for Bayesian model comparison (see Appendix). This analysis
produced strong evidence favoring the PVL model over the
Bernoulli model (Bayes factor = 29). This suggests that the PVL
model generalizes better to both groups than the Bernoulli model,
and that the PVL parameter estimates for Users may still be validly
interpreted to explain their behavior, even if its model fit to the
user group data alone may not be as good as the Bernoulli model’s.
Fourth, the results of simulation analyses (see below) supported

the superiority of the PVL over the EVL with regard to the ability
of the models to accurately simulate the actual choice behavior
of each group. These results are similar to those of Ahn et al.
(2008), which showed that the prospect utility function had better
accuracy and generalizability than the expectancy utility function
when accounting for participants’ choices on the IGT.
Simulationmethod. A simulationmethod can be used to evaluate

how accurately the model is able to predict a participant’s future
choice behavior given that individual’s previous choices and the
outcomes (s)he obtained from those choices. Using the procedure
in Appendix B of Ahn et al. (2008), we ran simulations using both
models. For each model, a subject’s best fitting parameters were
provided to the model and 100 simulations of that subject’s trial
by trial deck selections were created. The simulated proportion
selected from each deck was then computed separately for users
versus controls.
Examination of Fig. 3 suggests that the PVL model more

accurately simulated the observed pattern of choices for each
group. Among Controls, the EVL simulation over-predicts the
proportion actually chosen from the high frequency loss decks (A
and C) and under-predicts the proportion chosen from the low
frequency loss decks (B and D). In contrast, the PVL simulation
better matches participants’ actual preferences for the low
frequency loss decks (B and D). Among Users, the PVL does a better
job than the EVL of modeling Users’ actual preference for high
immediate gains coupled with low frequency losses (Deck B). The
remaining results will focus on the PVL model.
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Fig. 3. Simulation results of the PVL and EVL models for (a) Control group and (b) user group. Error bars represent±1 SEM.
Fig. 4. Subjective median utility values for (a) net gains only, and (b) net losses only, plotted separately for Users (solid lines) and Controls (dashed lines). Dotted lines are
±1 SEM and dots are possible outcomes in the IGT.
Table 4
Median values of model parameters for the PVL model.

Recency
(A)*

Utility shape
(α)*

Loss aversion
(λ)*

Consistency
(c)**

Controls 0.06 0.44 0.73 1.64
Users 0.21 0.99 0.01 0.88

Note. Groups were compared using the Mann–Whitney U test.
* p < 0.01.
** p < 0.001.

3.4. Predicting group membership using model parameters

We evaluated the ability of the parameters of the PVL model to
significantly predict groupmembership after accounting for group
differences in estimated IQ and IGT behavioral performance using
logistic regression. This analysis, with group (User vs. Control) as
the dependent variable, revealed that the PVL model parameters
significantly improved the accuracy of logistic regression model to
predict group membership. The model containing only estimated
IQ and IGT performance (percent advantageous) as predictors
classified 84.4% of participants correctly (χ2(2) = 21.96; p <
0.001;−2 log likelihood = 22.28, sensitivity (to cannabis use)
= 88.2%, specificity = 80%). After accounting for IQ and IGT
performance, the inclusion of the PVL model parameters to the
logistic regression model significantly improved the ability to
predict group membership (χ2(4) = 11.66; p < 0.05;−2 log
likelihood = 10.62, sensitivity = 100%, specificity = 93.3%). The
logistic regression model classified 96.9% of participants correctly
with the inclusion of the PVL parameters.

3.5. Between-groups comparison of PVL model parameters

Next, we compared the groups on the parameter estimates
of the PVL model to determine how psychological processes
relevant to decision-making differed between Users and Controls.
The groups differed significantly on all parameters generated by
the PVL model. Non-parametric group comparisons were used
because the model parameters were not normally distributed (see
Table 4). Compared to Controls, Users exhibited lower values for
the Consistency (Mann–Whitney Uc = 37.0; p < 0.001) and
Loss Aversion (Uλ = 47.0; p < 0.01) parameters, but higher
values for the Recency (UA = 60.5; p < 0.01) and Utility Shape
(Uα = 54.5; p < 0.01) parameters.
Users and Controls differed in their subjective evaluations of

the outcomes experienced during the IGT as shown by plots of
their utility functions for gains (Fig. 4(a)) and losses (Fig. 4(b)).
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To construct these plots, we first computed a utility function for
each subject based upon his or her Utility Shape (α) and Loss
Aversion (λ) values as determined by the PVL model. Next, the
average utility function for members of each group was generated
by averaging group members’ expected utility values associated
with each of a number of possible actual outcomes. In Fig. 4,
the x-axis of each graph corresponds to the actual (objective)
amount gained/lost on a trial and the y-axis to the subjective
utility of the outcome as calculated by the prospect utility function.
Compared to Controls, Users appeared to be more sensitive to
gains but less sensitive to losses. The difference in subjective utility
between gains of $50 and $100 was approximately $50 for Users
but only $30 for Controls (Fig. 4(a)). For large losses (−$1250),
the subjective utility was approximately $0 for Users but −$400
for Controls (Fig. 4(b)). Thus, Controls were less sensitive to the
magnitudes of gains, whereas Users were less sensitive to the
magnitude of losses. Users’ utility functions were so extreme for
losses that loss magnitude typically was ignored altogether.

4. Discussion

4.1. Summary of basic findings

The results of the present study suggest that the PVL model
provides a more accurate account of decision-making on the IGT
than the EVL model, and demonstrate the usefulness of the PVL
model in uncovering the cognitive processes that contribute to
performance on that task.
Furthermore, the results show that the PVL model may

be used to identify specific impairments in those processes
among members of a clinical sample (chronic cannabis users).
The between-groups comparison of the PVL model parameters
indicated that Users and Controls differed on several processes
germane to decision-making. Relative to Controls, Users’ choices
on the IGT were characterized by greater sensitivity to gains,
insensitivity to losses, greater dependence upon recent outcomes,
and less consistency with expected payoffs. Thus, cannabis users
differ from controls in terms of the motivational, memory, and
response processes that contribute to overall performance on the
IGT (Stout et al., 2004).

4.2. Comparison of decision processes between cannabis users and
controls

The present findings suggest that psychological processes
important for decision-making may be disrupted in chronic
cannabis users. The implications of such disruptions and the
relationship between the present results and the existing literature
on cognition and cannabis abuse are discussed in detail below.
Sensitivity to gains and losses. Our results suggest that chronic

cannabis users are relatively insensitive to losses and exhibit an
attentional bias, compared to controls who are more loss-averse.
Examination of Fig. 4(a) reveals that Users were more sensitive
than Controls to increases in themagnitude of wins, while Fig. 4(b)
shows that Users were relatively insensitive to increases in the
magnitude of losses. These results are consistent with previous
research demonstrating a relationship between substance abuse,
increased reward salience, and decreased sensitivity to punish-
ment (Finn, Mazas, Justus, & Steinmetz, 2002). In addition, these
results are similar to those obtained in previous studies of decision-
making in cocaine and polysubstance users using the EVL model
(Stout et al., 2004, 2005). The IGT performance of those groupswas
characterized by heightened attention to gains relative to losses.
Thus, chronic cannabis abusers may exhibit the same hypersensi-
tivity to gains and/or hyposensitivity to losses as do chronic users
of other drugs such as cocaine.
In addition to the IGT, drug users’ hypersensitivity to gains

has been observed with other tasks and models. Drug users have
shown increased risk taking behavior on both the Balloon Analog
Risk Task (Lejuez et al., 2002) and the Angling Risk Task (Pleskac,
2008). When these tasks were further analyzed with a Bayesian
learning model, drug use was related to higher sensitivity to
payoffs, as indicated by the model’s γ+ parameter (Pleskac, 2008;
Wallsten, Pleskac, & Lejuez, 2005). Thus, the finding of a higher
alpha parameter in marijuana users here converges with findings
from other tasks andmodels, and thereby provides support for the
usefulness of the PVL model.
The PVLmodel’s use of the prospect utility functionmay explain

why that model fit the data better than did the EVL model. The
PVL model incorporates two parameters (α, λ) that collectively
describe sensitivity to gains and loss aversion, whereas the EVL
model computes outcome utilities based upon a single parameter
(w). Indeed, sensitivity to gains and loss aversion may not be
perfectly correlated (i.e., an individual could be sensitive to losses
and gains, whereas another could be sensitive to losses only).
The PVL model permits this type of relationship, whereas the EVL
model treats win/loss sensitivity as perfectly correlated, such that
an increase in sensitivity to losses is necessarily accompanied by
a decrease in sensitivity to gains. Importantly, the simulation data
revealed that the PVL model was able to account for participants’
preferences for Deck B, whereas the EVL model was not (Fig. 3).
This may be a consequence of the PVL model’s non-linear utility
function, rather than its extra model parameter. Yechiam and
Busemeyer (2005) modified the EVL model to incorporate a
linear two-parameter utility function (including separate gain/loss
sensitivity parameters) but with the same learning rule (delta
learning rule) and choice rule (trial-dependent choice rule) as
in the present study. The results revealed that the modified EVL
model was unable to predict participants’ preferences for Deck B.
Previous research has indicated that acute cannabis exposure

may increase human participants’ sensitivity to reward in a
decision-making task. Lane et al. (2005) showed that individuals
were more likely to choose a ‘‘risky’’ option over a ‘‘non-risky’’
option following exposure to cannabis versus placebo. In that
study, the ‘‘non-risky’’ option was associated with lower per-
selection gains but a positive expected value over the experimental
session (112 trials), whereas the ‘‘risky’’ option was associated
with higher per-selection gains but an expected value of $0
over 112 selections. Furthermore, following the highest dose of
marijuana administered during the study, participants were more
likely to perseverate on the risky option whether they won or
lost. In contrast, participants in the placebo condition exhibited a
higher probability to shift to the non-risky option when a risky
choice resulted in punishment. The IGT is similar to the task
used by Lane et al. (2005) in that both tasks require participants
to consider outcomes experienced over a sequence of selections
when making choices between options associated with varying
outcomes. The present results suggest that chronic cannabis abuse
may be associated with disruptions in motivational processes
similar to those observed during acute intoxication.
Recency. Users exhibited a higher value for the Recency

parameter than did Controls, suggesting that the decisions of Users
were affected more heavily by recent outcomes than were those
of the Controls. Large values of this parameter indicate rapid
forgetting of past outcomes. In addition, IGT performance suffers
when a working memory load is introduced (Hinson, Jameson,
& Whitney, 2002). Thus, working memory impairment among
chronic cannabis users may compromise their ability to retain
active representations of previous outcomes on the IGT, resulting
in poorer overall task performance.
The present results differ from previous studies from our group

thatmodeled substance users’ decision-making on the IGT. Bishara
et al. (2009) found no differences between young cannabis users
and non-using controls on any EVL model parameters, although
that sample was younger than our User group (mean age =
24 years vs. 33 years, respectively) andwere generally lighter users
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of cannabis. In a separate investigation, Stout et al. (2004) found
that male cocaine users did not differ with regard to the learning
rate parameter when compared to sex-matched controls, whereas
Stout et al. (2005) found that female (but not male) polysubstance
users exhibited higher values for that parameter.2 Collectively,
these results suggest that different drugs of abuse may be
associatedwith different outcomes on assessments of learning and
memory processes. In addition, they suggest that sex differences
may exist among substance users with regard to relationships
between chronic drug use and learning and memory processes.
Our modeling analysis is consistent with previous reports that

have identified an association between cannabis use and poorer
performance on measures of learning and memory (Grant et al.,
2003; Solowij & Battisti, 2008). There are at least two possible
accounts of Users’ memory impairment and its impact on decision-
making on the IGT. First, Users may have had trouble explicitly
recalling the previous outcomes of their choices, which may have
led them to choose more often from disadvantageous decks.
Second, users may have been unable to integrate the information
obtained from each card selection (i.e., the card’s value) online
as it was presented into an overall expectancy of the outcomes
associated with each deck. That is, users may have been unable to
retain the outcome associated with each selection in memory long
enough to integrate it into a coherent representation of the deck’s
value that could be used to guide selections toward advantageous
decks.
Consistency. Users exhibited a lower value for the Consistency

parameter than Controls, indicating that Users’ selections were
less consistent with their expectancies regarding the outcomes
associated with each deck. Group differences on this parameter
may reflect differences in personality variables related to risk-
seeking. Current and former substance users score higher than
non-users on personality measures designed to assess impulsivity
(Allen, Moeller, Rhoades, & Cherek, 1998; Patton, Stanford, &
Barratt, 1995). Cannabis-using college students rate more highly
than non-users on a self-report measure of disinhibition (Satinder
& Black, 1984), a personality trait associated with a tendency to
seek out and engage in risky experiences. Among adolescents,
cannabis use is correlated with engagement in risky behaviors,
such as sexual promiscuity (Miles et al., 2001). Thus, cannabis users
may possess underlying personality traits that predispose them to
engage inmultiple forms of risky behavior in addition to substance
use. With regard to the present findings, Users’ lower value for the
Consistency parameter may reflect the tendency of this group to
engage in risk-seeking behavior, regardless of whether they are
aware of the potential consequences. That is, on the IGT, heavy
cannabis users may understand the contingencies associated with
each deck butmay choose from the disadvantageous decks because
they are undeterred by their association with risk.

4.3. Caveats

The results of the present investigation should be viewed in
light of some potential caveats. We studied a small sample of users
that had been using for a long period of time (M = 13.2 years);
therefore, these resultsmay not generalize to individuals that have
used cannabis for a shorter period of time. In addition, Users’
performance may have reflected the presence of transient levels
of cannabinoids in the brain rather than persistent alterations of
neural structures underlying decision-making that are the result
of chronic exposure to cannabis (Pope et al., 1995). Cannabis

2 Despite a significant overall between-group difference on the Recency (A)
parameter of the PVL model, analyses of the effect of gender on Recency revealed
that male Users did not differ frommale Controls, although the difference between
female Users and female Controls was significant at the trend level (User median
A = 0.30, Control median A = 0.20; p = 0.06).
metabolites can be detected in the urine of chronic users even
following one month abstinence from the drug (Ellis, Mann,
Judson, Schramm, & Tashchian, 1985), and the effects of these
metabolites on cognition are unclear. Furthermore, the present
study’s cross-sectional design and use of self-selected (instead
of randomly assigned) samples of Users and Controls limit our
ability to determine whether the observed group differences in
IGT performance and PVL model parameters reflect the effects
of drug use, or premorbid group differences in personality traits
or cognitive-motivational processes. For instance, cannabis users
are more impulsive than non-users (Satinder & Black, 1984),
a personality trait which has been associated with poorer IGT
performance (Davis, Patte, Tweed, & Curtis, 2007). Future research
on this topic may be best informed by modeling the decision-
making processes of groups of participants that are matched on
impulsivity or other relevant personality traits but that differ in
terms of their exposure to drugs of abuse, or by within-subjects
designs which compare the decision processes of substance
users during a period when they are actively using with the
same processes in those individuals after a period of prolonged
abstinence.
Overall evidence for the PVLmodel was strong compared to the

Bernoulli baseline model (see Appendix), but group comparisons
revealed that the PVL model fit Users’ data poorly. Given Users’
poor learning on the IGT, however, the baseline model’s better
fit for this group is unsurprising (see Fig. 1). We may view
this from the perspective of model mimicry, which is not
uncommon in mathematical modeling (Navarro, Pitt, & Myung,
2004; Wagenmakers, Ratcliff, Gomez, & Iverson, 2004). Model
mimicry occurs when competing models provide a similar level
of fit to a certain kind of data pattern. This problem may be
resolved if it can be shown that one model describes a wider range
of plausible data than the other. Otherwise, it may be necessary
to evaluate those models using other kinds of criteria such as
interpretability. In the present case, wemay view that the baseline
model mimics the PVL model for Users’ data. The utility of the PVL
model to explain individual differences in choice behavior on the
IGT would be in question if the baseline model mimicked the PVL
model for most of the observed data patterns, but the maximum
likelihood and hierarchical Bayesian analyses demonstrate that
this is not the case. Furthermore, the PVL model resulted in a
plausible, interpretable set of model parameters for both groups,
and Users’ parameters were consistent with previous research on
the cognitive sequelae of chronic cannabis use. Therefore, the PVL
model may provide a useful account of decision-making on the IGT
even in clinical groups that do not perform well on that task.

4.4. Conclusions

Our analyses revealed that the PVL model of decision-making
more accurately accounted for participants’ behavior on the IGT
than did the original EVL model. This may be due to the PVL
model’s use of a prospect utility function, which can account for
the gain/loss frequency effect and Controls’ decreasing sensitivity
to very large gains versus smaller gains (Ahn et al., 2008). We
found that chronic cannabis users’ decisions on the IGT could
be characterized by more reward-seeking, less loss aversion,
greater reliance upon recent outcomes, and less consistency
between choice behavior and outcome expectancies than non-
users. These results support the contention that chronic cannabis
users exhibit impairments on psychological processes related to
motivation, learning and memory, and behavioral control. These
impairmentsmay contribute to poor decision-making in this group
and lead to or exacerbate problems related to cannabis use,
such as the inability to achieve or maintain abstinence. Future
investigations should focus on the similarities and differences
among these psychological processes across diverse substance-
abusing samples. Collectively this knowledge may contribute to
the development of prevention and intervention approaches for
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substance use disorders that are sensitive to individual differences
in specific psychological processes underlying decision-making.
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Appendix

Understanding differences in basic decision-making processes
between drug abusers and non-abusers using cognitive models
such as EVL and PVL relies on estimating model parameters from
individual subjects (using maximum likelihood methods), and
comparing competing non-nested cognitive models using a model
comparison index. This method requires us to collect a large
number of trials from each participant. In practice, however, the
actual number of trials we may collect from each participant is
small, whichmay contribute to noisy parameter estimates for each
person. One could assume that all people in the group are the
same, and average across individuals and fit the model to more
stable data representing the average individual. However, there are
substantial individual differences (i.e., the behavior of the average
does not look like any single individual’s behavior), and fitting
the average data can produce highly misleading results (Estes &
Maddox, 2005). A hierarchical Bayesian analysis may be applied
to avoid these problems (cf. Gelman, Carlin, Stern, and Rubin
(2004); Gill (2008)) and using this approach yields a substantial
increase in power to detect differences and identify relationships.
Hierarchical Bayesian analysis allows for individual differences yet
pools information from the data of all individuals to obtain more
stable and reliable estimates of model parameters.
We developed a hierarchical Bayes extension of the PVL model

as follows. Rather than fitting each individual separately using
maximum likelihood, this analysis used Bayesian estimation based
on data from all individuals. In particular, we use a distribution
model to represent the individual differences in model parameters
(rather than fitting individuals separately). A beta distribution is
used to represent the distribution of individual differences for
each of the four parameters. Specifically, if we randomly sample
an individual i, Ai ∼ beta (µA, σA), αi ∼ beta (µα, σα), λi ∼
beta (µλ, σλ), and ci ∼ beta (µc, σc), jointly independent, where
µ and σ are the mean and standard deviation of each beta
distribution. This is a commonly used distribution for Bayesian
modelingwhen the parameters are bounded. It is effective because
it is capable of capturing a wide variety of distribution shapes. The
Bayesian approach to estimation also requires an assignment of
a prior distribution to the mean and standard deviation of each
beta distribution. For the prior distribution, we use a uniform (i.e.,
flat) distributionwhich assumes no a priori knowledge about these
parameters. Finally, the observed data matrix from all participants
is used to compute the posterior distributions for all parameters
according to the Bayes rule. For each model parameter, the
posterior distributions describe the likelihood that various values
correspond to the true parameter value. This entire procedure was
implemented in the WinBUGS environment (Lunn, Thomas, Best,
& Spiegelhalter, 2000).3
Table A.1 summarizes the results from the hierarchical Bayes

estimation of the PVL model parameters. For each group, the
parameter estimate in the table is the posterior mean of the group

3 AllWinBIGS codes used for the analyses presented in the appendix are available
at http://mypage.iu.edu/~dfridber/.
Table A.1
Posterior mean values of group mean parameters for the PVL model.

Recency
(A)*

Utility shape
(α)*

Loss aversion
(λ)**

Consistency
(c)**

Controls 0.05 0.39 1.12 1.73
Users 0.27 0.89 0.04 0.81
Note. In this Bayesian analysis, groups are compared by computing the posterior
probability that each parameter of a group is greater than that of another group.
Thus, the p values listed below do not have the same meaning as the p values in
traditional hypothesis testing, but should be interpreted as direct estimates of such
probabilities.
* p < 0.005.
** p < 0.0001.

Fig. A.1. Posterior distributions of differences of group mean parameters.
Differences represent each mean parameter of the control group minus the
corresponding parameter of the user group. Specifically, they are denoted by
µA.control − µA.user , µα.control − µα.user , µλ.control − µλ.user , and µc.control − µc.user .
Each of the parameters is the mean of the beta distribution that models individual
differences in each PVL model parameter for the two groups.

average of individual parameters (i.e., mean of beta distribution
discussed in the preceding paragraph). Differences between
control and user groupswere evaluated by examining the posterior
distribution of differences of group means. For example, from the
hierarchical Bayes estimation, a posterior distribution of group
mean difference of the recency parameter (i.e., µA.control − µA.user)
can be obtained. Then, by estimating the probability of this value
being greater than (or less than) zero,we can estimate the posterior
probability that the group mean parameter of a group is greater
or less than that of the other. Fig. A.1 shows such posterior
distributions of the group mean difference of each parameter.

http://mypage.iu.edu/~dfridber/
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The results from the hierarchical Bayes analysis, including the
group means of each parameter and their differences between
groups, are consistent with the results obtained from the
maximum likelihood estimation procedure (see Table 4).
A benefit of hierarchical Bayes modeling lies not only in the

estimation ofmodel parameters but also inmodel comparison. The
inference of model selection can also be affected by noise in the
data if done solely with individual data, just as with parameter
estimation. With non-hierarchical models, the best that can be
done is to obtain as many model selection indexes, such as BIC
values, as the number of individual subjects, and then to perform a
significance test of the null hypothesis that two competing models
are equally plausible. By assuming that individual data are totally
independent, however, this approach loses the power of the test.
Hierarchical modeling, in contrast, properly accumulates evidence
in the data by capturing the dependency among individuals, if it
exists.
The same hierarchical form of the PVL model as described

abovewas used in the present hierarchical Bayes analysis of model
comparison. For the baseline model, a categorical distribution
with four fixed probabilities (i.e., the probability of a choice
from each of the four decks) was specified to explain each
subject’s responses throughout all trials. Two assumptions were
made to convert this into a hierarchical form. First, this set of
probabilities was assumed to be different among subjects; second,
those probabilities were assumed to be governed by a parent
distribution for which a Dirichlet distribution with diffuse priors
for the Dirichlet parameters was used. Data from all subjects were
used to estimate the posterior probability of the PVL model being
true versus the Bernoulli baseline model. An equal probability of
0.5 for each model was assumed as a prior. Initially, two separate
analyses were performed using control and user group data, just as
with the case of parameter inference. The results showed that the
posterior probability of the PVLmodel against the Bernoulli model,
evidenced by the data, is approximately 1–(10−18) for the control
group, and 0.000012 for the user group. These values translate
into the more commonly used Bayes factors of 87 for Controls
and −23 for Users on the scale of twice the natural logarithm.
Both are considered to be ‘‘very strong’’ evidence according to the
guidelines suggested by Kass and Raftery (1995), and agree with
the results of the non-hierarchical BIC analyses conducted for each
group separately that are described in the main text.
Theoretically, however, there is not much to learn from

modeling if the conclusion is that the PVL model explains people’s
learning in the control group better whereas the baseline model
fits users’ behavior better. The reason is that a model that provides
a good description for data from a population should, if it is to be
considered to be a good one, do so for data fromanother population
as well. That is, the PVL model should generalize adequately well
to users’ data even if its model fit may not be as good as that of a
competingmodel, and the same logic applies to the baselinemodel,
too, if it is to be considered to be a good model. A straightforward
way to compare these models in this regard is to perform the
same Bayesian model comparison described above, but using all
subjects’ data fromboth groups to select themodel that generalizes
better across all individuals. The results of this analysis produced
a Bayes factor of 29, indicating very strong evidence for the
PVL model and the superior generalizability of that model to all
participants as compared to the baseline model.
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