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Abstract

Adolescence represents a time of unparalleled brain development. In particular,

developmental changes in morphometric and cytoarchitectural features are accompa-

nied by maturation in the functional connectivity (FC). Here, we examined how three

facets of the brain, including myelination, cortical thickness (CT), and resting-state

FC, interact in children between the ages of 10 and 15. We investigated the pattern

of coordination in these measures by computing correlation matrices for each mea-

sure as well as meta-correlations among them both at the regional and network

levels. The results revealed consistently higher meta-correlations among myelin, CT,

and FC in the sensory-motor cortical areas than in the association cortical areas. We

also found that these meta-correlations were stable and little affected by age-related

changes in each measure. In addition, regional variations in the meta-correlations

were consistent with the previously identified gradient in the FC and therefore

reflected the hierarchy of cortical information processing, and this relationship per-

sists in the adult brain. These results demonstrate that heterogeneity in FC among

multiple cortical areas are closely coordinated with the development of cortical mye-

lination and thickness during adolescence.
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1 | INTRODUCTION

Childhood and adolescence are times of active morphological and

functional maturation in the brain with important implications for cog-

nitive developments and psychological states. The morphological

transformation during these early years is characterized by the thin-

ning of the cortical gray matter as well as increased synaptic pruning

and myelination underneath the cortex (Grydeland et al., 2013;

Huttenlocher, 1979; Natu et al., 2019; Selemon, 2013; Tau &

Peterson, 2010). These structural-developmental processes are

thought to facilitate information flow across cortical regions and

reconfigure brain connectivity into the adult form (Fair et al., 2008;

Markham & Greenough, 2004). Nevertheless, the degree to which the

anatomical and functional changes are coordinated in the developing

brain remains sparsely investigated.

To investigate the pattern of structure–function coupling, recent

studies took advantage of diffusion tractography to estimate interre-

gional white-matter connectivity and correlated its profile with
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functional connectivity (FC) (Baum et al., 2020; Preti & van de

Ville, 2019; Vázquez-Rodríguez et al., 2019). These studies identified

a similar pattern of regional variation in which structure and function

appear to be tightly coupled in unimodal sensory areas but become

systematically decoupled in the supramodal cortex. Despite the

strengths of these studies, it should be noted that diffusion tractogra-

phy has potential limitations to reconstruct the complexity of white-

matter pathways accurately. This includes inaccuracies in streamline

propagation from angular orientation error, unresolved fibers, or

ambiguous orientational information, as well as problems with the

tracking process itself through biases, parameter selection, and ambi-

guities in pathway selection (Schilling et al., 2019; Sotiropoulos &

Zalesky, 2019). The regional structure-function coupling was also

assessed by computation techniques utilizing structural covariance

across populations (Alexander-Bloch et al., 2013). The inter-subject

covariance profile of morphological measures, such as CT, resembled

FC in a region-specific manner. In addition, cortical myelin content

estimated by T1w/T2w ratio is supposed to be more closely related

to the underlying microstructure of the gray matter (Ganzetti

et al., 2014; Glasser & van Essen, 2011). Accordingly, this has been

proposed as an alternative anatomical measure to construct structural

covariance networks (Ma & Zhang, 2017; Melie-Garcia et al., 2018).

Interestingly, the coupling between myelination covariance and

resting-state FC was found to vary across functional networks, with

stronger correlation in sensory and motor networks than in cognitive

and supramodal association networks (Ma & Zhang, 2017). These

results suggest that structure-function relationships might be guided

by a hierarchical gradient of cortical information processing spanning

unimodal to supramodal cortex (Baum et al., 2020; Paquola

et al., 2019; Preti & van de Ville, 2019; Vázquez-Rodríguez

et al., 2019), reflected in multiple anatomical, functional, and biochem-

ical markers (Burt et al., 2018; Demirtaş et al., 2019; Felleman & van

Essen, 1991; Honey et al., 2012; Margulies et al., 2016; Markov

et al., 2014; Murray et al., 2014; Soltani et al., 2021).

Most of the previous neuroimaging studies on structure-

function coupling have focused on the adult brains or used diffusion

tractography as a measure of structural connectivity, although multi-

ple studies have found reorganization of FC during development

(Baum et al., 2020; Dong et al., 2021; Fair et al., 2008). Therefore,

how specific patterns of structure-function coupling as observed in

the adult human brain, including the parallel changes in structural

and functional features along the hierarchy of cortical information

processing, emerge during development remains poorly understood.

During transition from childhood to adolescence, a gradual shifting

of gradient patterns across cortical sheet has been observed (Dong

et al., 2021). Nevertheless, whether and how the structure-function

coupling and gradient of cortical hierarchy retain their alignment

during development remains poorly understood. In the present

study, therefore, we investigated the relationship, referred to as

meta-correlation (MC), between the resting-state FC and the struc-

tural covariance of two anatomical features, namely CT and

T1w/T2w ratio, in a cross-sectional cohort of children with ages

from 10 to 15.

2 | MATERIALS AND METHODS

2.1 | Participants

Subjects were recruited with an online advertisement, and excluded if

they had metal implants, history of substance abuse, previous medical

diagnoses, born prematurely under 36 weeks, or if the mother has

been using illegal drugs or alcohol for more than 3 months. We

obtained structural (T1w and T2w) and resting-state functional MRI

(rs-fMRI) scans from a total of 459 adolescent participants. Subjects

were excluded based on motion effects in both anatomical and func-

tional data. Anatomical scans were excluded if they failed manual QC

from three different researchers. For functional data, subjects were

excluded based on their average framewise displacement (FD), com-

puted as the sum of the absolute values of the differentiated realign-

ment estimates (by backwards differences) at every time point (Power

et al., 2012). Based on the distribution of mean FD, a value of

0.352 mm was used as the exclusion threshold (corresponding to the

distribution mean + 2 SD), which resulted in the removal of 18 sub-

jects. Accordingly, the final dataset analyzed in this study contained

441 subjects (251 males, 190 females, ages 10–15, mean age = 12.3

± 1.6 years; see Table S1). Data were acquired on two different 3T

Siemens Magnetom MRI scanners: a Prisma at Sungkyunkwan Univer-

sity (SKKU; N = 373 participants) and a Trio Tim at Seoul National

University (SNU; N = 68). Subjects were placed in the MRI scanner

once prior to the experimental session to introduce them to the scan-

ning environment. The entire procedure was approved by the Public

Institutional Review Board (IRB) in the Republic of Korea, and written

informed consent was obtained from the parents of each participant.

2.2 | Data acquisition

All structural scans had a field of view (FOV) of 256 mm2, voxels

which are 1.0 mm3 in size, and acquired using GRAPPA parallel acqui-

sition with a PAT acceleration factor of 2. SKKU T1w scans were

acquired using a 3D TurboFLASH sequence with repetition time

(TR) = 2400 ms, echo time (TE) = 2.58 ms, flip angle = 12� and total

acquisition time of 5 min 43 s. SKKU T2w scans were acquired using

a modified variable flip angle 3D Turbo Spin Echo sequence (NATIVE

SPACE) with TR = 3200 ms, TE = 352 ms, and total acquisition time

of 6 min 19 s. SNU T1w scans were acquired using a 3D TurboFLASH

sequence with TR = 2400 ms, TE = 2.68 ms, flip angle = 12� and

total acquisition time of 5 min 43 s. SNU T2w scans were acquired

using a 3D-Turbo spin-echo sequence with a variable flip-angle (TSE

VFL) with TR = 3200 ms, TE = 333 ms, and total acquisition time of

6 min 51 s.

All functional scans at both sites were acquired using an EPI-FID

sequence with GRAPPA parallel acquisition with a PAT acceleration

factor of 2. SKKU rs-fMRI scans were acquired with TR = 952 ms,

TE = 32.0 ms, measurements = 750, FOV = 210 mm2, multi-band

acceleration factor = 4, voxel size = 2.5 mm3, and total acquisition

time of 12 min 13 s. SNU rs-fMRI scans were acquired with
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TR = 1400 ms, TE = 35.6 ms, measurements = 500,

FOV = 270 mm2, multi-band acceleration factor = 3, voxel

size = 3.2 � 3.2 � 2.5 mm3, and total acquisition time of 12 min 1 s.

Two short (three measurement) spin-echo field map scans, with oppo-

site phase encoding directions, were also acquired for use in distortion

correction. Participants were instructed to relax and lay still in the

scanner with their eyes open and not to fall asleep.

2.3 | Preprocessing

All our scans were processed using the same processing steps. Struc-

tural MRI were processed using the HCP minimal preprocessing pipe-

lines (version 3.22), which consists of the PreFreeSurfer, FreeSurfer,

and PostFreeSurfer pipelines (Fischl, 2012; Glasser et al., 2013, 2016).

The T1w and T2w images were aligned with the anterior

commissure–posterior commissure (AC–PC) line, brain extracted, cor-

rected for intensity bias and registered to the MNI template. The

images were then parcellated based on the Schaefer parcellation

(a functional parcellation based on resting-state FC data with 400 total

regions of interest (ROI); Schaefer et al., 2018), the white and pial sur-

faces were traced, and the data were projected onto the cortical sur-

face. Standard anatomical measures such as CT, area, volume, and

curvature were then computed both on the volume and on the sur-

face. In addition, because gyral crowns tend to be thicker than sulcal

fundi, the CT was corrected for folding-related biases by regressing

out the mean curvature measure from each subjects' thickness data

(Glasser & van Essen, 2011). Myelin content was computed by taking

the log ratio of T1w/T2w signal intensities on a voxel-by-voxel basis,

on the standard CIFTI grayordinate surface. The log is taken to

remove the implicit ratio bias present in any ratio, in order to give

equal weights to deviations in the numerator and denominator. Other

details of the processing were consistent with those used in previous

studies (Fischl, 2012; Glasser et al., 2013).

The resting-state fMRI data were processed with our custom

fMRI-volume and fMRI-surface pipelines, which were modeled after

the HCP pipeline (version 3.22, Glasser et al., 2013). The fMRI-volume

pipeline consisted of temporal de-spiking, motion correction, suscepti-

bility distortion correction (using FSL's TOPUP in conjunction with

two spin echo field maps with opposite phase encoding direction;

Andersson et al., 2003), brain extraction, slice-timing correction, regis-

tration to MNI and anatomical space, volume censoring with interpo-

lation, and voxel-level time series normalization. For the interpolation,

the metric used was DVARS thresholded using the boxplot cutoff

(75% + 1.5 � IQR), and only the volume in question was censored. In

addition, artifacts caused by subject motion, cardiac pulsation, and

other spurious sources of noise were further cleaned by the ICA

+ FIX pipeline (Griffanti et al., 2014; Salimi-Khorshidi et al., 2014).

Finally, a temporal band-pass filter of 0.008–0.1 Hz was applied to

the resulting time series. The fMRI-surface pipeline takes the pro-

cessed volumetric data and projects it onto the standard CIFTI grayor-

dinate surface (59,412 voxels), as well as smooths the data with a full

width half max of 2 mm.

The anatomical and functional surface maps were then parcel-

lated based on the Schaefer parcellation, which is a functional parcel-

lation based on resting-state FC data with 400 total ROI separated

into 17 resting state networks (RSNs; Schaefer et al., 2018). For mye-

lin and CT, the average over all grayordinate voxels in a given ROI was

taken as the ROI's value. This process is the same for the functional

data, but here mean time series were computed for each ROI from

the individual time series of each voxel.

Motion is a known issue for fMRI data, especially for younger

subjects (Cosgrove et al., 2022; Power et al., 2012), so we examined

the effects of motion in our data. Given that FD was moderately cor-

related with age (r = �0.35, p < .0001) in our data, we computed the

FD-FC correlation proposed by (Ciric et al., 2017) for each of our

Schaefer ROIs. We found that the values of FD-FC correlation were

centered around zero without any signs of large motion effects. The

absolute median FD-FC correlation was 0.062, which is comparable

to the results obtained from the best models used in Ciric et al. (2017)

(their Figure 3).

2.4 | Correlation matrices for anatomical features
and resting-state FC

Since the current study focuses on local features, global patterns, and

correlations were removed in all of our data at the subject level.

Demeaning of the myelin and CT measures was done by computing

mean myelin and CT across all ROI for each participant and subtract-

ing it from the individual myelin and CT measures of each ROI, respec-

tively. Then, the parcellated data for each participant was stacked into

a matrix (441 � 400) and the Pearson correlation across participants

was then computed to create ROI-level correlation matrices

(400 � 400). For the functional data, global signal regression was per-

formed for each individual, and FC matrices were constructed by tak-

ing the Pearson correlation between each region's residual time

series. These matrices were then averaged to create a group-averaged

ROI-level resting-state FC matrix (400 � 400).

Sex was regressed out of all measures to account for sex differ-

ences, and for FC, average root mean square (RMS) motion was also

regressed out to account for motion effects. To remove the con-

founding effects from multi-site data, we also applied an inter-site

harmonization procedure to our data via the commonly used tool

ComBat (Fortin et al., 2018; Johnson et al., 2007). ComBat removes

site effects from measures extracted from processed MRI scans,

which in our case are the myelin and CT measures for the anatomical

data and the FC measures for the functional. Regression and harmoni-

zation of the myelin and CT measures was done prior to cross-subject

correlation by operating on the stacked matrices. For the FC data, the

upper triangles of each subject's FC matrices were stacked together,

regressed, and harmonized, and then re-separated into the original FC

matrices prior to group averaging.

Reproducibility of myelination, thickness covariance, and FC was

assessed using a split-group approach, in which all 441 subjects were

randomly divided into two subgroups (n = 220 and 221). The
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covariance matrices were independently computed for each subgroup,

and reproducibility was evaluated by Pearson correlation of the corre-

sponding covariance values between the two subgroups. Between-

matrices correlations were calculated to evaluate the shared variance

and its significance was estimated using the Mantel permutation test.

2.5 | Meta-correlations

In addition to examining the correlation between the anatomical or

functional measures of different participants, we also explored the

relation between these different correlation matrices. Given two cor-

relation matrices, we can compute the Pearson correlation between

each row vector of one matrix and another row vector of the other

matrix and obtain a new correlation coefficient matrix, which is herein

referred to as MC (Figure 1). We consider three such meta-correla-

tions: myelin-FC meta-correlation (myelin-FC MC), CT-FC meta-

correlation (CT-FC MC), and myelin-CT meta-correlation (myelin-CT

MC). Reproducibility of MC was assessed using a split-group

approach. Both myelin-FC MC and CT-FC MC provide quantitative

measures of structural-functional coupling in the cortex. We calcu-

lated the spatial correspondence between the two brain maps and

assessed to what extent they are aligned. Significance of the MCs

were quantified using BrainSMASH (Burt et al., 2020), which was

developed for statistical testing of spatially autocorrelated brain mea-

sures. This approach is based on matching spatial-autocorrelation var-

iograms between surrogate and target maps. For each ROI, the MC

was computed from two corresponding brain measure maps (i.e., rows

in the correlation matrices). We generated 1000 surrogate maps with

preserved spatial autocorrelation for one of the brain maps. The p-

value was calculated as the incidence of these surrogate maps having

correlations more extreme than original MC. Similar procedure was

also performed to assess the significance of the spatial correspon-

dence between different brain maps.

To evaluate the relationship between MC and cortical functional

hierarchies (Dong et al., 2021; Margulies et al., 2016), principal gradi-

ent of group-averaged FC was computed using BrainSpace (vos de

Wael et al., 2020). Briefly, the group-averaged FC matrix was trans-

formed to a nonnegative and symmetric affinity matrix using normal-

ized angle similarity kernels. Then, diffusion map embedding, a

nonlinear dimensionality reduction technique, was applied on this

affinity matrix to obtain a low-dimensional representation of the FC

matrix. The principal gradient that accounts for the greatest variance

in connectivity was used as the map to denote the cortical functional

hierarchy, and was correlated with MC brain maps.

In order to examine MCs between anatomical correlation and FC,

we computed the MC between each ROI of the Schaefer parcellation,

as well as between the 17 different RSN into which the Schaefer ROIs

are grouped (mean ROI per network = 23.5 ± 8.5). MCs for each of

the RSN were computed as the average Fisher's z-transformed MC of

all ROI within the network. This was a weighted average, where the

weights for each network ROI were the number of voxels in that ROI

divided by the total number of voxels in the network. The breakdown

of networks and ROI are shown in Figure 2.

2.6 | Age dependence of the MC

We examined the effect of age on the MC both within our sample,

and in comparison to HCP young adults (van Essen et al., 2013). To

test whether the structural correlation in myelin and CT and their MC

with FC in our own data might be driven by age-dependent matura-

tional coupling, we recomputed the myelin and CT covariance matri-

ces as well as the MC using the residuals from a regression model in

which the effect of age was regressed out from a given anatomical or

functional feature.

F IGURE 1 Schematic diagram describing the ROI level meta-
correlation. At the top level (the correlation matrices), the correlation
profile vectors for a given ROI (size 1 � 400) are extracted from each
of the matrices. These vectors are then correlated to get a meta-
correlation for that region. The type of meta-correlation is determined
by the choices of the A and B matrices (myelin, thickness, covariance,
or FC).
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In order to compare our results from adolescents with those from

adults, we used data from the Human Connectome Project (HCP)

(Glasser et al., 2016; van Essen et al., 2013). Preprocessed myelin

brain maps and rs-fMRI time series, which were derived from the HCP

minimal preprocessing pipelines, were downloaded for N = 1113 sub-

jects (507 male, age 22–37 years) from the HCP S1200 release, for

which informed consent was obtained. After excluding subjects

whose data were not complete or the FD of rs-fMRI scan exceeds

0.273 mm (same exclusion criteria as used in adolescents data,

i.e., average FD plus two times the standard deviation), N = 1047 sub-

jects (mean age 28.7 ± 3.7 years) remained. Details in HCP scanning

parameters and preprocessing pipeline have been reported elsewhere

(Glasser et al., 2013, 2016). Myelin-FC MC was then estimated using

the same processing steps mentioned above. Although our experi-

ments followed closely with HCP in terms of scanning protocols and

preprocessing steps, there are still some differences remaining that

prevent a direct quantitative comparison. Therefore, we used the prin-

cipal FC gradient derived from RSFC as a reference of cortical organi-

zation and assessed whether the spatial correspondence between

myelin-FC MC and functional gradient varies from adolescents to

adults.

3 | RESULTS

3.1 | Reproducibility of correlation matrices

We first examined the correlation matrices for the myelin and CT as

well as the FC matrix (Figure 3). The mean absolute value of ROI cor-

relations revealed that, overall, the correlations were smaller for CT

than for myelin and FC (jrj = 0.155, 0.062, and 0.126, for myelin, CT,

and FC, respectively). In addition, the standard deviations of the cor-

relation values shows that CT has a much lower variability than the

other measures (σ = 0.204, 0.095, and 0.171, for myelin, CT, and FC,

respectively). Nevertheless, these measures of correlation and FC

were robust as revealed by the correlation coefficient between the

two correlation coefficient matrices computed for two randomly

divided subgroups. These reproducibility scores were still higher for

FC and myelin (r = 0.99 and 0.83, respectively) than for

CT (r = 0.49).

We quantified the overall association among myelin covariance,

CT covariance, and FC. Across 79,800 edges between the 400 brain

regions, there is a moderate similarity between myelin and CT covari-

ance matrices (r2 = 0.25, Mantel permutation test p < .001). There is

also a significant association between myelin covariance and FC

(r2 = 0.19, Mantel permutation test p < .001), and CT covariance and

FC (r2 = 0.14, Mantel permutation test p < .001), respectively. The

association of myelin covariance-FC was significantly stronger than

that of CT covariance and FC (Fisher's z method, p < 10�12). To assess

whether myelin and CT provide similar or distinct structural con-

straints for FC, multivariate regression was performed. When com-

bined, myelin, and CT covariances can explain up to 22.3% of variance

in FC across all pairs of brain regions (Partial Mantel permutation test

p < .001). The correlation coefficient (r = 0.47) was significantly

higher than using myelin or CT covariance alone as predic-

tor (p < 10�6).

3.2 | Reproducibility and significance of MCs

We explored the relationship between myelin, CT, and FC by comput-

ing correlations between the rows of the individual correlation matri-

ces, that is, the MC, for each pair of demeaned measures (see

Section 2). This produced ROI level maps for the myelin-FC MC, CT-

FC MC, and myelin-CT MC (Figure 4). Among these three MC mea-

sures the myelin-CT MC was overall strongest (mean MC = 0.56), fol-

lowed by the myelin-FC MC (mean MC = 0.50), and the CT-FC MC

(mean MC = 0.48). The reproducibility of these MCs was quantified

by correlation between two randomly divided subgroups, which were

0.86, 0.57, and 0.67 for the myelin-FC MC, CT-FC MC, and myelin-CT

F IGURE 2 Four-hundred
ROI's from the Schaefer
parcellation, colored according to
which of the 17 resting state
networks they reside within.
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MC, respectively. These results indicate that myelin-FC MC is the

most robust of the three measures, while myelin-CT MC is the least.

Across all three types of MC, the superior parietal regions around

the central sulcus and occipital regions tended to display largest MC

values, while the area around the precuneus contains uniformly small

MC. For the myelin-FC and myelin-CT MC, some areas of the medial

frontal regions also showed large values. The myelin-FC MC map also

shows higher values in the occipital lobe.

Next, we tested whether these regional variations in the MC

might merely reflect the spatial autocorrelations in the underlying

matrices. The resulting brain maps of p-value (Figure 5) show that

brain regions with high MCs are statistically significant even when

spatial autocorrelations were accounted for (spatial-autocorrelation

preserved null hypothesis testing, pSA < .05). There is also a strong

correlation between myelin-FC MC and CT-FC MC brain maps

(r = 0.68, Figure 6), indicating the consistency of the two structural-

functional coupling measures. This correlation remains statistically sig-

nificant after accounting for spatial autocorrelation (pSA < .001). How-

ever, it should be noted that CT-FC MC overall shows lower

correlations and narrower dynamic range compared to myelin-FC MC.

3.3 | Strength of resting state network MCs

In order to obtain more robust measures of MC and characterize their

patterns at a network level, we computed the average z-transformed

MC of all ROIs within each of the 17 Schaefer networks for each MC

(Figure 7). The MC for the somatomotor-A network showed the larg-

est value for myelin-FC and myelin-CT MC, and also was the only net-

work with larger than average MCs for all three MCs. The highest

single MC value was for the myelin-CT MC of the somatomotor-A

network (MC = 0.82), while the lowest was the myelin-FC MC of the

default-A network (MC = 0.38).

3.4 | Minimal age-related effects on MCs

To examine the linear effect of age on MC, we compared the MCs

before and after regressing out the age-related changes in myelin, CT,

and FC out of each ROI (Figure 8). We found that the MCc were

largely unaffected by regressing out the age-related

changes (r > 0.98).

F IGURE 4 ROI-level meta-correlation maps for myelin-FC (a), CT-FC (b), and myelin-CT (c).

F IGURE 3 Demeaned ROI level correlation matrices for myelin (a), CT (b), and FC (c). The hemisphere is indicated by the L (left) or R (right) at
the top/left of the matrices. The ROIs are ordered in the same way in each of the matrices.
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3.5 | Regional variability in myelin-FC MC reflects
cortical hierarchies of functional specialization

It has been shown that principal gradient of FC revealed by the diffu-

sion embedding method captures a primary dimension of variance in

FC from unimodal sensory areas to supramodal association regions

(Margulies et al., 2016). The principal gradient derived from our ado-

lescents' FC data (Figure 9a) showed consistent functional hierarchies,

in which one end is anchored at visual, somatomotor, and auditory

regions, and the other end spans default mode network regions. We

evaluated whether regional variability in the MCs reflect such a mac-

roscale functional hierarchy. For myelin-FC MC, we found that its

regional variability aligns significantly with the principal gradient of FC

(Figure 9b). We observed stronger MCs in unimodal sensory regions

and weaker MCs in association areas (r = �0.38, pSA < .001). For CT-

FC MC, its association with principal FC gradient was lower but still

significant (r = �0.25, pSA = .009).

To test whether myelin-FC MC in the adult brain is similarly

related to the principal FC gradient, we performed the same analysis

for the results from HCP young adults. The principal FC gradient

showed a spatial profile similar to that of adolescents (Figure 9c). In

addition, as in the adolescents, the spatial profile of myelin-FC MC

again showed significant negative association with principal FC gradi-

ent (r = �0.47, pSA < .001; Figure 9d), and this pattern was not signifi-

cantly different from that seen in the adolescents (Fisher's z

method, p = .06).

4 | DISCUSSION

This study investigated the relationship, referred to as MC, between

the resting-state FC and the covariance structure of anatomical fea-

tures, such as the CT and T1w/T2w ratio in children with ages from

10 to 15. We showed that there is a notable consistency in spatial

pattern between myelin-FC and CT-FC MCs. In addition, the regional

variability of this MC paralleled the cortical hierarchy of functional

specialization, with higher coupling in the unimodal sensory cortex

and lower coupling in supramodal association regions. Finally, by

reproducing the association between MC and function gradient in an

independent dataset, we validated our findings and showed that the

association persists from adolescence to adulthood.

4.1 | Microstructural versus macrostructural
correlation

As shown in previous studies, brain structure, such as gray matter vol-

ume and CT, varies across the population in a coordinated fashion.

Brain regions that belong to the same functional group often covary

in their morphological properties. For example, CT of brain regions

that are connected structurally and functionally tend to covary

(Alexander-Bloch et al., 2013; Gong et al., 2012). The architecture of

CT-based structural correlation has also been shown to be genetically

heritable (Pol et al., 2006; Schmitt et al., 2008) and is associated with

behavioral and cognitive abilities (Bermudez et al., 2009; Carreiras

et al., 2009). As myeloarchitecture can now be reliably estimated with

MR, we examined in the present study how CT and FC might be

F IGURE 5 ROI-level maps of significant MC after accounting for spatial autocorrelation for myelin-FC (a), CT-FC (b), and myelin-CT (c). The
p-value is indicated by the color, where black represents p-values >.05.

F IGURE 6 Plots of myelin-FC MC versus CT-FC MC for each
Schaefer ROI. The overall Pearson correlation between them is shown
at the top. The ROIs have been colored according to network, and the
color key is shown at the bottom.
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F IGURE 7 Mean
z-transformed resting state
network meta-correlations for
the 17 Schaefer networks. The
order of networks in all plots was
determined by the values of
myelin-FC MC (top). The global
mean of all networks is indicated
by the blue dashed line in each

panel. Error bars represent 95%
confidence intervals computed
using weighted bootstrapping
with 1000 samples.

F IGURE 8 Plots of original
versus age-regressed myelin-FC
MC (left), CT-FC MC (middle) and
myelin-CT MC (right) for each
Schaefer ROI. The overall

Pearson correlation between
them is indicated above each
plot. The ROIs have been colored
according to network as in
Figure 6.
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linked to myelin covariance matrix. The higher correlation coefficients

and reproducibility in myelin covariance, as shown in the present

study, indicates the higher level of synchronized cortical myelination

might better reflect the FC between region pairs than morphological

measures. Whereas the biological significance of the structural covari-

ance remains incompletely understood, the markedly stronger correla-

tion found in cortical myelination might still contain useful

information that reflect developmental coordination or synchronized

maturation between different areas of the brain.

In addition, we showed that the myelin covariance accounts for

more variability in FC than CT covariance does. Even more variance of

FC can be explained when including both myelin and CT covariance as

predictors. Thus, both myelin and CT covariances provide consistent

and complementary information of the structural substrate for brain

functions. Note that our estimation of myelin was based upon the

T1w/T2w ratio. Although the T1w/T2w ratio does not correspond to

cortical myelin density in a one-to-one fashion (Arshad et al., 2017;

Hagiwara et al., 2018; Uddin et al., 2019), it is still a useful marker of

myelination. Consistent with previous studies (Glasser & van

Essen, 2011), our results also show that the highest myelin density

occurs in sensorimotor and visual cortices.

4.2 | MCs between structural covariance and
function connectivity

Our results indicate that coordinated myelination between brain

regions is related to FC (Alexander-Bloch et al., 2013; Huntenburg

et al., 2017). By carrying out the brain-wide meta-correlation analysis

of structural-functional relationship, we demonstrated the association

between the FC and the structural correlation. We also characterized

the spatially heterogeneous nature of the MC, where unimodal sen-

sory networks, including somatomotor and visual network regions,

consistently showed higher values than supramodal association

F IGURE 9 The principal
gradient of the FC matrix (a) that
shows the functional hierarchies
of unimodal (blue) and
supramodal (red) regions, and the
scatter plot of myelin-FC MC
versus principal FC gradient for
adolescents (mean age 12.3
± 1.6 years) (b). For comparison,

the principal FC gradient of HCP
young adults (mean age 28.7
± 3.7 years) (c), and its
association with myelin-FC MC
(d) are also shown. The overall
Pearson correlation between
them is shown above the plot.
The ROIs have been colored
according to the network, as in
Figure 6.
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networks. These results were also consistent with the patterns

observed between FC and structural covariance based on diffusion-

weighted imaging (Baum et al., 2020; Vázquez-Rodríguez et al., 2019).

These results raise the possibility that the maturation of myelin might

be closely coordinated with developmental changes in the organiza-

tion of FC during adolescence. Our findings also reveal a high spatial

correspondence between myelin-FC and CT-FC MCs. This consis-

tency indicates that the coordinated structural-functional develop-

ment is reflected in both morphological and microstructural measures.

We also demonstrated that the myelin-FC MC shares similar spa-

tial patterns with cortical hierarchies of functional specialization

(Baum et al., 2020; Burt et al., 2018). The convergence of myelin

covariance profiles and FC in unimodal sensory regions suggests that

the FC in these brain areas might be strongly determined by direct

anatomical connections between them. In contrast, the relatively

lower MCs in supramodal regions indicate the FC is less coupled with

structural connectivity and may rely on indirect pathways to transmit

neural signals.

The fact that the spatial correspondence between myelin-FC MC

and functional gradient can be reproduced in an independent dataset

demonstrates the robustness of the relationship. In addition, this asso-

ciation remains at a similar level in both adolescents and young adults.

MC measures the similarity between structural and functional correla-

tion profiles across the brain, so myelin-FC MC can be used as an

index of myelin-FC coupling. Although the age-group comparison in

this study remains qualitative due to the differences in data acquisi-

tion and processing, the persistent association between myelin-FC

MC and functional gradient implies an age-independent mechanism

underpinning the coordinated anatomical and functional changes dur-

ing brain maturation.

Several limitations of the current study should be noted. First, our

focused age range (10–15 years) suits group-level analysis due to the

homogeneity of the cohort, but limits the statistical power of age-

effect analysis presented above. Also, the reliable construction of

structural covariance (i.e., myelin and CT covariance matrix) requires a

large group of subjects and precludes investigating how MC changes

over the age range of current study. Second, age-associated motion

artifacts in both anatomical and rs-fMRI can be a concern when inter-

preting our results (Cosgrove et al., 2022; Power et al., 2012). We

instituted several procedures to mitigate the effect of motion in rs-

fMRI, such as exclusion of data with excessive motion, ICA-based

denoising, and the use of motion regressors in our analysis. Note that

only group-averaged FC is used when estimating MCs which further

reduces the motion artifacts. Finally, our findings are derived from a

cross-sectional study. To further improve our understanding in associ-

ation between myelination and FC, it would be beneficial to conduct

longitudinal assessment of the measures discussed in this study and

such data are currently being collected in the ABCD study (Chaarani

et al., 2021). Previous studies using CT-based correlation network

analysis have shown that correlated anatomical structure between

brain regions results from similarities in maturational trajectories

(Alexander-Bloch et al., 2013; Khundrakpam et al., 2019).

In conclusion, by quantifying the regional coupling between

resting-state FC and structural covariance, we observed the MCs

related to CT and T1w/T2w ratio share a consistent pattern which

markedly aligns with cortical hierarchy of functional specialization.

We validated our findings by reproducing the association between

MC and function gradient in an independent dataset from young

adults, and showed that the association persists from adolescence to

adulthood.
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