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Abstract
Decision-making tasks that have good ecological validity, such as simulated gambling tasks,
are complex, and performance on these tasks represents a synthesis of several different under-
lying psychological processes, such as learning from experience, and motivational processes
such as sensitivity to reward and punishment. Cognitive models can be used to break down
performance on these tasks into constituent processes, which can then be assessed and studied
in relation to clinical characteristics and neuroimaging outcomes. Whether it will be possible
to improve treatment success by targeting these constituent processes more directly remains
unexplored. We review the development and testing of the Expectancy-Valence and Prospect-
Valence Learning models from the past 10 years or so using simulated gambling tasks, in
particular the Iowa and Soochow Gambling Tasks. We highlight the issues of model gener-
alizability and parameter consistency, and we describe findings obtained from these models
in clinical populations including substance use disorders. We then suggest future directions
for this research that will help to bring its utility to broader research and clinical applications.
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For the past 10 years, we have been developing and applying cognitive models of
decision making to understand decision-making deficits in brain-damaged, drug ad-
diction, and psychopathological populations. The basic idea is to investigate perfor-
mance of clinical populations on standard laboratory decision-making tasks and then
compare their performance to nonclinical or healthy control samples. The decision
tasks used in these studies are designed to be somewhat complex and capture impor-
tant aspects of real-life decision making. However, this task complexity implies that
performance is an interaction and synthesis of several different underlying compo-
nents, including motivational, learning, and choice processes. Cognitive models of
these complex decision tasks are used to break performance down into these com-
ponents (Busemeyer and Stout, 2002). The parameters associated with these compo-
nents can then be used to understand the source of the decision-making deficits in
these special clinical populations. Using these methods, we have uncovered impor-
tant differences in decision processes in various populations including individuals
with orbital frontal cortex damage, Huntington’s disease, Parkinson’s disease, heroin
addiction, cocaine addiction, alcohol addiction, stimulant drug addiction, depression,
schizophrenia, bipolar disorder, and also incarcerated criminal offenders.

Uncovering the sources of decision-making processes has two main purposes
which may be exploited in research on clinical populations such as substance use
disorders. First, cognitive models make it possible to test specific hypotheses about
specific neuroanatomical substrates that underlie decision-making deficits in a given
clinical population. Whereas the outcomes of decision tasks reflect the complex in-
terplay among several cognitive components, such as reward sensitivity and the abil-
ity to learn from feedback, models allow these processes to be separately estimated
using different parameters, making them available for separate consideration and in-
vestigation. Second, by decomposing these complex tasks into constituent processes
that are relevant to particular clinical populations, and also characterizing individuals
on these constituent processes, it may be possible to develop treatment strategies tai-
lored to specific disorders or individuals, which may yield important improvements
in outcomes. Such an eventuality may be particularly important in addiction disor-
ders where treatment success is notably limited.

The purpose of this chapter is to review the progress that we have made using
these cognitive modeling methods to study decision-making deficits in clinical popu-
lations. This chapter has three main parts. First, we describe two decision-making
tasks that have been used in our past work. Then, we present a brief and intuitive
description of the models and the parameters that we developed for these tasks.
Third, we review our applications of these tasks, and the findings that we have dis-
covered using our cognitive modeling methods.

1 IGT AND SGT DECISION-MAKING TASKS
It is important to examine decision-making deficits across different kinds of
decision-making tasks in order to obtain converging evidence for the underlying cog-
nitive sources of decision-making deficits. Two critical assumptions underlying our
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past work are the assumptions of model generalization and parameter consistency.
A model generalizes if one can fit the parameters of the model to one task for an in-
dividual, and then use these same parameters to predict performance on other closely
related tasks for the same individual. Parameters are consistent if the parameters
estimated from one task for an individual correlate with the parameters estimated
from another closely related task for the same individual. These assumptions are cru-
cial if we want to interpret these parameters as measuring a stable characteristic of the
individual rather than some inessential characteristic of an arbitrary task.

1.1 THE IOWA GAMBLING TASK
This decision task was developed by Bechara et al. (1994) to be a simulated gambling
task in which decision makers learn from experience to choose among four decks of
cards that produce both wins and losses. An important feature of the Iowa Gambling
Task (IGT) is the complex interplay among motivational, cognitive, and response
processes underlying the explicit choice behavior revealed in this task. The task re-
quires participants to choose a card from one of the four decks (labeled decks A, B, C,
and D, respectively) on each trial, and the total number of trials is unknown to par-
ticipants. When a card is chosen, the gains and losses produced by that card are
revealed. Decks C and D are better than decks A and B in terms of long-term net
gain, and therefore, the former are typically called the advantageous or good decks,
while the latter are disadvantageous or bad ones. The actual payoffs are shown in
Table 1.

A typical finding in the initial application of the IGT to clinical populations is that
normal people tend to learn to choose the good decks (i.e., decks C and D) more fre-
quently than the bad ones (i.e., decks A and B), but various clinical populations tend
to persist in choosing from the bad decks throughout the task (see Fig. 1). However,
the poor performance by clinical populations can arise from at least three different
sources in this task. First is a motivational source—they may be insensitive to losses;
second is a cognitive source—they may fail to learn the contingencies or forget the
consequences; and the third is a decision-making source—they may be more incon-
sistent and less optimal with their choices. Cognitive models provide a method to
decompose performance and determine parameters associated with each of these
three sources.

Table 1 The Payoff Distribution of the IGT

Deck A B C D

Gain from each trial ($) 1.00 1.00 0.50 0.50

Loss amount(s) in each set of 10 trials !1.50 !12.50 !0.25 !2.50

!2.00 !0.50

!2.50 !0.50

!3.00 !0.50

!3.50 !0.75

31 IGT and SGT decision-making tasks
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1.2 SOOCHOW GAMBLING TASK
Chiu et al. (2008) developed another simulated gambling task that is closely related
to the IGT. However, unlike the IGT, which presents both a win as well as a loss on
each trial, the Soochow Gambling Task (SGT) only presents the single net payoff on
each trial. The payoffs used in the SGT are shown in Table 2.

Although the IGT and SGT share many similarities, the choice behaviors pro-
duced by these two tasks are quite different (see Fig. 2). Theoretically, however,
the same learning and decision-making processes should underlie each task, and
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FIGURE 1

Proportion of advantageous choices on the IGT by nonabusers (left panel) and cocaine
abusers (right panel). Jagged curve shows observed choice proportions, and smoother curve
shows average predictions from EVL model.

From Stout et al. (2004).

Table 2 The Payoff Distribution of the SGT

Deck A B C D

Payoffs in each set of five trials ($) 1.00 0.50 !1.00 !0.50

1.00 0.50 !1.00 !0.50

1.00 0.50 !1.00 !0.50

1.00 0.50 !1.00 !0.50

!5.25 !3.25 5.25 3.25
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the differences in behavior should result from the change in payoff structure. There-
fore, if the same individual performed both tasks, then we expect to obtain similar
parameters for an individual to be used across both tasks.

2 THE EVL AND PVL MODELS
Our purpose here is to provide a general overview. Additional information and math-
ematical equations can be found in the original articles. The Expectancy-Valence
Learning (EVL) model was originally developed for the IGT by Busemeyer and
Stout (2002), and subsequently, it has gone through several revisions to improve
its performance, which has resulted in a newer version called the Prospect-Valence
Learning (PVL) model (Ahn et al., 2008; Dai et al., 2015).

2.1 MODEL
All of the variations of the EVL model are built upon three general assumptions.
First, participants use a utility function to evaluate the positive and/or negative pay-
offs that they experience after their choice on each trial. Second, the participants use
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FIGURE 2

Proportion of advantageous choices from normal participants on IGT (curve above 0.50) and
SGT (curve below 0.50).

From Ahn et al. (2008).
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a reinforcement learning rule to update their expectations for each deck based on the
utility of the payoff produced by the choice on each trial. Third, the participants use a
choice probability function to choose a deck on each trial on the basis of the expec-
tations for each deck. The newer PVL model has revised the details for the utility,
learning, and choice probability functions as compared to the original EVL model.
See Table 3 for the classification of the cognitive models based on their utility func-
tions and learning rules.

2.2 PARAMETERS
The utility function entails a “loss” parameter that measures a person’s sensitivity to
losses. For example, one reason for poor choices on the IGT is that a participant is
insensitive to the large losses experienced with disadvantageous decks. The learning
rule involves a “recency” parameter that determines the rate of decay of past expe-
rience. For example, another reason for poor choices on the IGT is that although a
person may be sensitive to losses, the person may discount or forget those losses too
rapidly. The choice probability function includes a “sensitivity” parameter that de-
termines the tendency to exploit (optimize) versus explore (random) choices. For ex-
ample, a third reason for poor choices on the IGT is that although a person may learn
that some decks are generally better than others, this person may still wish to explore
decks more randomly rather than sticking systematically to the optimal choice.

2.3 ESTIMATION METHODS
The model parameters are estimated for each individual based on the decks that they
chose on each trial, where each person typically provides over 100 choices. Two dif-
ferent estimation methods have been used: one uses maximum likelihood methods to
estimate the parameters for each person separately (e.g., Busemeyer and Stout,
2002); the second uses hierarchical Bayesian methods that include a model of the
distribution of individual differences (Ahn et al., 2011, 2014). We have investigated

Table 3 Cognitive Models for the Iowa Gambling and Similar Tasks Classified
Based on Their Utility Functions and Learning Rules

Learning

Utility Function

Expectancy
Valence

Prospect
Valence

Prospect
Valence 2

Delta Learning EVL PVL-Delta PVL2

Decay Reinforcement
(DecayRI)

PVL-DecayRI

Note: The EVL and PVL models also use a different choice probability function.
EVL, Expectancy-Valence Learning; PVL-Delta, Prospect-Valence Learning model with the delta
rule; PVL-DecayRI, Prospect-Valence Learning model with the Decay Reinforcement rule; PVL2,
Prospect-Valence Learning model with an alternative form of prospect utility function.
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the properties of each method of parameter estimation using computer simulation
methods. Although both methods are effective at recovering the mean values of
the parameters for each simulated group, the hierarchical Bayesian method provides
better recovery of the distribution of parameters (Ahn et al., 2011, 2014). Programs
are available for estimating model parameters on the authors’ web sites.

2.4 MODEL TESTING AND COMPARISON
Before one can place trust in the model parameters, it is necessary to first test and
compare various competing models and evaluate the capability of a model to account
for the trial-by-trial choices of an individual. We have conducted several such model
comparisons using a variety of methods (see, e.g., Ahn et al., 2008; Yechiam and
Busemeyer, 2005, 2008). One method (see, e.g., Busemeyer and Stout, 2002) is
based on comparing model fits using model comparison indices, such as the Bayes-
ian information criterion, which evaluates the accuracy as well as the complexity of
each model (measured by number of parameters). A stronger test is based on a
method called the generalization criterion (Busemeyer andWang, 2000). In the latter
case, the basic idea is to estimate the model parameters for an individual from one
task (e.g., the IGT) during the calibration stage, and then use these same parameters
for the same person to predict performance on the other task (e.g., the SGT) during
the generalization test phase. Yechiam and Busemeyer (2008) and later Ahn et al.
(2008) used the generalization criterion to identify the model that best predicts be-
havior during the generalization test phase in these simulated gambling tasks. These
model tests are the basis for revising the EVL model to the new PVL model. It is
likely that further modifications and improvements will continue in the future.

2.5 PARAMETER CONSISTENCY
We would like to interpret the parameters of a model as measuring something about
an individual, rather than simply reflecting something about the task. Therefore, if
we estimate the same parameters from two different tasks that are designed to mea-
sure the same learning and decision processes, such as the IGT and SGT, then the
parameters obtained from the two tasks should be correlated. For example, a person
with an above-average “loss” sensitivity parameter from one task should have an
above-average “loss” sensitivity from the other task. This question was initially in-
vestigated by Yechiam and Busemeyer (2008) using maximum likelihood methods
to fit individuals, and they found moderate support for parameter consistency using a
version of the EVL model. However, the correlations were modest, and this is partly
a result of sampling error produced by fitting each person separately using maximum
likelihood methods. A small number of learning trials can produce estimates that
have a large variance. More recently, we have used hierarchical Bayesian methods
to increase the stability of parameter estimates and improve parameter consistency,
which resulted in some tentative but promising outcomes.
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3 APPLICATIONS OF THE EVL AND PVL MODELS TO CLINICAL
POPULATIONS INCLUDING ADDICTION
3.1 EARLY APPLICATIONS
In one of our initial studies (Yechiam et al., 2005), we collected 10 different data sets
from various clinical populations that examined performance on the IGT, and ana-
lyzed these data sets using EVL model. The clinical populations included brain-
damaged populations (ventral medial prefrontal cortex damage, lesions of the right
somatosensory and insular cortex, basal ganglia damage from Parkinson’s disease
and Huntington’s disease), drug abusers (young alcohol abusers, young polydrug
abusers, long-term cannabis users, cocaine users), a special clinical sample
(Asperger), and an older-aged sample. The performance of each of these groups
on the IGT was compared to an appropriate control group. Most interesting was
the finding that althoughmany of the special (e.g., clinical, neurological) populations
produced the same behavioral pattern of poor performance relative to the control
group, the populations produced strikingly different patterns with respect to the
EVL model parameters. For example, both the ventral medial prefrontal cortex
and the cocaine abusers performed poorly compared to controls on the IGT; how-
ever, the former population differed from controls mainly with respect to the learning
rate parameter, and the latter differed from controls mainly with respect to the gain/
loss utility parameter. This suggests different cognitive and motivational sources for
the decision-making deficits in these two groups.

In a subsequent study, we (Yechiam et al., 2008) investigated the cognitive pro-
cesses of criminal offenders incarcerated for various crimes. This study included vi-
olent offenders, drug and sex offenders, drivers operating a vehicle while impaired,
and matched controls. The results were also contrasted to those obtained from neu-
rological patients with focal brain lesions in the orbitofrontal cortex, and from drug
abusers. The findings indicated that whereas all criminal groups tended to select dis-
advantageously, the analysis of the EVL model parameters indicated major differ-
ences among groups. Certain subpopulations, most significantly drug and sex
offenders, overweighted potential gains compared to losses, similar to chronic co-
caine abusers. In contrast, assault/murder criminals tended to make less consistent
choices and to have a higher recency learning parameter similar to patients with orbi-
tofrontal damage.

3.2 RECENT APPLICATIONS
A newer version of the model for the IGT, called the PVL model, which uses a more
sophisticated utility function, has been applied to several clinical populations, in-
cluding chronic cannabis users (Fridberg et al., 2010), polydrug users (Vassileva
et al., 2013), HIV-seropositive individuals (Vassileva et al., 2013), individuals with
eating disorders (Chan et al., 2014), and individuals with past dependence purely on
amphetamine or heroin (Ahn et al., 2014).
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Fridberg et al. (2010) found that chronic cannabis users, with an average of ap-
proximately 13 years of cannabis abuse, showed dramatically reduced loss aversion,
higher reward sensitivity, reduced response consistency, and greater reliance on re-
cent outcomes (i.e., greater recency) compared to healthy controls. They also found
that including PVL model parameters in the logistic regression model for classifying
group membership significantly improved the discrimination between groups (i.e.,
classification accuracy from 84.4% to 96.9%). Notably, when using just behavioral
data, for example, percent accuracy, the raw behavior did not reveal any significant
differences between the clinical populations and the healthy controls.

Vassileva et al. (2013) showed that HIV and drug use have distinct impacts on
different decision-making processes in women. Current polydrug use, including co-
caine, heroin, tobacco, or alcohol, was associated with both compromised learning/
memory and reduced loss aversion, whereas HIV-seropositive status was associated
only with reduced loss aversion.

In Chan et al. (2014), both anorexia nervosa and bulimia nervosa groups showed
impaired behavioral performance compared to healthy controls. However, the appli-
cation of the PVL model revealed differential decision-making impairments under-
lying anorexia and bulimia; compared to healthy controls, the anorexia group
showed compromised learning/memory, whereas the bulimia group showed altered
outcome evaluation, including both reward and punishment.

Ahn et al. (2014) applied the PVL and other competing models, including the
Value-Plus-Perseverance model (VPP) (Worthy et al., 2013) to a sample of individ-
uals with past dependence on amphetamine or heroin. Despite their protracted absti-
nence, both clinical groups showed impaired behavioral performance on the IGT
compared to healthy individuals. The VPP model had the best post hoc model fit,
but the PVL model with the decay-reinforcement learning rule outperformed the
VPP model in other model comparison indices, including simulation performance
and parameter recovery. With the PVL model, compared to healthy controls, past
heroin users displayed reduced loss aversion, and past amphetamine users showed
increased reward sensitivity, which suggests that differential decision-making mech-
anisms may underlie opiate and stimulant drug use.

3.3 PARAMETER CONSISTENCY
Recently, Dai et al. (2015) further advanced our modeling of the IGT and SGT from a
reinforcement learning perspective by proposing an alternative prospect utility func-
tion and a mixture updating rule for the relevant models. The alternative prospect
utility function combines features of both the expectancy utility function in the
EVL model and the prospect utility function in the PVL model. On the one hand,
like the expectancy utility function, the new prospect utility function assumes that
people evaluate simultaneous gain and loss on a single trial separately before com-
bining the results into an overall evaluation. On the other hand, the new prospect
utility function retains the assumptions of nonlinear utility and loss aversion accord-
ing to the prospect theory (Kahneman and Tversky, 1979). Similarly, the new
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updating rule, which assumes both delta learning and memory decay, is a mixture of
the learning rules in the EVL and PVL models. With the previous and new utility
functions and updating rules, as well as the previous two choice rules, 18 reinforce-
ment learning models for the IGT and SGT were generated factorially. These models
were then fit to individual data from both the IGT and the SGT in a normal control
sample and a group of opiate users.

The results of model comparison showed that the model with the alternative pros-
pect utility function, the decay-reinforcement learning rule, and the trial-independent
choice rule in general performed the best among the 18 competing models, in either
controls or opiate users. This model is referred to as the PVL2 model since it is iden-
tical to the PVL model except for an alternative prospect utility function.

More importantly, the PVL2 model was one of the only two models that produced
significant correlations between individual estimates from the two tasks for all the in-
volved parameters. The only other model that also produced significant correlations on
all parameters was the model with expectancy utility function, decay-reinforcement
learning rule, and the trial-independent choice rule. However, the strength of associ-
ations produced by this model was lower than that of the PVL2 model.

The PVL2 model has four parameters, which include the outcome sensitivity pa-
rameter (a), the loss aversion parameter (g), the recency or memory decay parameter
(A), and the choice consistency parameter (c). Specifically, the outcome sensitivity
parameter indicates how sensitive an individual is to the difference in monetary out-
comes; the loss aversion parameter suggests how much an individual is averse to
losses relative to his/her degree of preference toward gains of the same magnitude;
the recency or memory decay parameter indicates how quickly one’s expectancies on
the four decks decay between adjacent trials; and the choice consistency parameter
suggests how much an individual’s explicit choice is consistent with the underlying
expectancies of the four decks. The result of the parameter consistency test on the
PVL2 model suggests that choice responses in these two tasks are at least partly gov-
erned by the same mechanisms reflected by the new model.

4 CONCLUSION AND FUTURE DIRECTIONS
The past 10 years has seen the development of cognitive models for the IGT and
SGT, with adequate model fits, and parameters that appear to have good utility
for distinguishing between various clinical samples, and that relate to significant in-
dividual characteristics such as personality measures and severity of clinical symp-
toms. These have deepened the understanding of the variety and nature of differences
between various substance abuse and other clinical groups, opening a potential win-
dow into the way basic psychological processes such as learning from experience or
feedback, and sensitivity to reward and punishment, may be affected by substance
abuse or may create vulnerability factors for developing substance use disorders.
Furthermore, these models have provided a possible way in which individual char-
acteristics can be assessed and targeted in individually tailored treatments.
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What are the next steps? First, with respect to modeling studies, although cogni-
tive models have been described for other decision-making tasks, studies that incor-
porate not only the IGT and SGT but also other relevant decision tasks could help to
more robustly establish model generalizability and parameter consistency, thereby
strengthening the claim that results from cognitive models tell us about stable char-
acteristics of individuals rather than idiosyncratic responses to specific task condi-
tions. We also acknowledge that our simple cognitive models only incorporate three
major processes and cannot directly account for other potentially important factors
such as the effect of mood state. We are currently investigating how we can improve
models for the IGT and other decision-making tasks based on recent advancements in
neuroscience and reinforcement learning.

Second, for the results of modeling analyses to become useful for broader neu-
roscience research, and particularly for clinical assessment, it will be essential to
make model fitting and parameter estimation possible for individual datasets
using methods that are usable for neuroscience researchers and clinicians who
will not have had training in either mathematical modeling or necessarily an
in-depth understanding of complex cognition. This will require careful consider-
ation of how to create programs that can be easily adopted and reliably used by a
broader set of professionals, as well as a way of communicating the utility of this
method and clinical relevant language for interpreting the outcomes that can be
generated by modeling analyses. For example, the IGT has been available com-
mercially now for several years and is sold by Psychological Assessment
Resources, Inc. Creating a modeling utility that could be provided when this task
is sold, along with guidelines for interpreting the results from model analysis,
would have the potential to transition cognitive modeling of this common
decision-making task into clinical and broader research use. Further, as the
IGT has been used in numerous studies, it may be possible to obtain a variety
of datasets, model these data, and then assemble sets of normative data that could
aid in clinical interpretation.

Specifically in the case of people with substance use disorders, for whom growing
evidence points to deficits in decision making as key elements for treatment failure
and relapse, the broader adoption of cognitive modeling in clinical assessment could
have significant payoff. Our group is committed to disseminating these methods and
assisting in their further development for use in research and clinical treatment of
addictions. We aim to map relationships between cognitive processes (i.e., model
parameters) and general risk/protective factors, as well as factors related to specific
substance use disorders (e.g., alcohol, opioid, stimulant) (Badiani et al., 2011).
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