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Substance dependent individuals (SDI) often exhibit decision-making deficits; however,
it remains unclear whether the nature of the underlying decision-making processes is
the same in users of different classes of drugs and whether these deficits persist
after discontinuation of drug use. We used computational modeling to address these
questions in a unique sample of relatively “pure” amphetamine-dependent (N = 38)
and heroin-dependent individuals (N = 43) who were currently in protracted abstinence,
and in 48 healthy controls (HC). A Bayesian model comparison technique, a simulation
method, and parameter recovery tests were used to compare three cognitive models: (1)
Prospect Valence Learning with decay reinforcement learning rule (PVL-DecayRI), (2) PVL
with delta learning rule (PVL-Delta), and (3) Value-Plus-Perseverance (VPP) model based
on Win-Stay-Lose-Switch (WSLS) strategy. The model comparison results indicated that
the VPP model, a hybrid model of reinforcement learning (RL) and a heuristic strategy
of perseverance had the best post-hoc model fit, but the two PVL models showed
better simulation and parameter recovery performance. Computational modeling results
suggested that overall all three groups relied more on RL than on a WSLS strategy.
Heroin users displayed reduced loss aversion relative to HC across all three models, which
suggests that their decision-making deficits are longstanding (or pre-existing) and may be
driven by reduced sensitivity to loss. In contrast, amphetamine users showed comparable
cognitive functions to HC with the VPP model, whereas the second best-fitting model
with relatively good simulation performance (PVL-DecayRI) revealed increased reward
sensitivity relative to HC. These results suggest that some decision-making deficits persist
in protracted abstinence and may be mediated by different mechanisms in opiate and
stimulant users.
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INTRODUCTION
Drug addiction is a chronic relapsing brain disease, characterized
by compulsive drug seeking and use despite negative conse-
quences in major life domains (Goldstein and Volkow, 2011).
Substance dependent individuals (SDI) are commonly charac-
terized by decision-making deficits, both on laboratory tasks
and in real life, manifested by lack of judgment and reduced
concern for the consequences of their actions. What remains
unknown, however, is whether these decision-making deficits
are equally represented across addictions to different classes of
drugs.

Current theories consider addiction to different classes of
drugs as a unitary phenomenon, in part based on evidence
that most drugs of abuse act on the mesocortico/mesolimbic

dopamine (DA) system (Wise, 1978; Di Chiara and Imperato,
1988; Robinson and Berridge, 1993). More recently, however, ani-
mal and human studies have begun to reveal important cognitive
and neurobiological differences between addictions to different
classes of drugs, such as stimulants and opiates (Pettit et al., 1984;
Rogers et al., 1999; Ersche et al., 2005b; Badiani et al., 2011). It
is now well known that these two classes of drugs act on differ-
ent mechanisms of DA modulation (Kreek et al., 2002, 2012). DA
transmission mediates self-administration of stimulants, but not
of opiates; in contrast, the μ-opiate receptor plays an important
role for opiate, but not for stimulant self-administration (Badiani
et al., 2011). Further, genetic studies reveal minimal overlap of
genes associated with stimulant and opiate addiction (Yuferov
et al., 2010).
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Preclinical studies reveal notable differences between stimu-
lants and opiates, which exert fundamentally different behavioral
effects, such that stimulants produce arousing and activating
effects, whereas opiates produce mixed inhibitory and excitatory
effects (Stewart et al., 1984). Of note, the rewarding effects of
stimulant self-administrations are greater in new and arousing
environments than in familiar and safe environments, whereas
the opposite is observed with the sedative effects of opiates
(Caprioli et al., 2008). Further, the neural pathway activated by
aversive stimuli from lateral habenula to rostromedial tegmen-
tal nucleus (RMTg) is affected by opiates, but not by stimulants
(Lecca et al., 2011).

In contrast, studies comparing neurocognitive performance
of human stimulant and opiate users have shown mixed results.
Some studies reveal distinct performance patterns in stimulant
vs. opiate users. Rogers et al. (1999) report that amphetamine
users perform worse than healthy individuals on the Cambridge
Gambling Task, whereas opiate users display intact performance
on this decision task. In addition, duration of drug abuse was
associated with suboptimal decision-making in stimulant users,
but not in opiate users. In another study (Ornstein et al., 2000),
amphetamine and heroin abusers were characterized by differ-
ent attentional shifting deficits, with amphetamine users being
impaired on the extra-dimensional (ED) and heroin users on
the intra-dimensional (ID) shift component of the task. Also,
cocaine users, but not heroin users show deficits in response
inhibition (Verdejo-Garcia et al., 2007b). In contrast, other stud-
ies reveal comparable neurocognitive profiles between users of
these two classes of drugs. Both cocaine and heroin users show
higher discounting of delayed rewards compared to alcohol users
and healthy individuals (Kirby and Petry, 2004). Further, on a
task measuring reflection impulsivity, both amphetamine- and
opiate-dependent individuals sample less information and per-
form worse than healthy individuals (Clark et al., 2006).

Decision-making is one of the neurocognitive domains on
which SDI are commonly impaired. It is typically indexed in the
laboratory with tasks that simulate real-life decision-making such
as the Iowa Gambling Task (IGT) (Bechara et al., 1994), on which
SDI often select choices that yield high immediate gains but have
higher future losses (Grant et al., 2000; Bechara et al., 2001; Bolla
et al., 2003; Bechara and Martin, 2004; Gonzalez et al., 2007;
Vassileva et al., 2007a; Verdejo-Garcia et al., 2007a). Decision-
making deficits among SDI are of immediate practical concern,
in light of their associations with HIV risk behaviors (Gonzalez
et al., 2005) and clinical outcomes such as abstinence (Passetti
et al., 2008). The IGT is a complex task and poor behavioral
performance could be the result of deficits in various distinct neu-
rocognitive processes, such as hypersensitivity to reward and/or
hyposensitivity to losses, failure to learn from past outcomes and
losses, and/or erratic and impulsive response style. In a series
of studies, Busemeyer et al. (Busemeyer and Stout, 2002; Stout
et al., 2004; Yechiam et al., 2005; Ahn et al., 2008) have devel-
oped mathematical models of the task that capture the complex
interplay of cognitive and motivational processes involved in
decision-making. The use of such models allows one to decom-
pose behavioral performance on the task into distinct cogni-
tive, motivational, and response processes, thereby providing a

fine-grained analysis of the underlying decision-making processes
and characterizing more precisely the decision-making deficits
of different clinical groups. This approach yields quantifiable
parameter estimates of such processes, which have been success-
fully mapped in various clinical populations including cocaine
users, cannabis users, alcohol users, individuals with Asperger’s
disease, Huntington’s disease, schizophrenia, and bipolar disorder
(for a review, see Yechiam et al., 2005), as well as in eating disor-
ders (Chan et al., 2014) and patients with HIV (Vassileva et al.,
2013). Studies applying this approach show that although behav-
ioral performance may be similar across different clinical groups,
the cognitive processes that underlie these behavioral profiles may
vary across groups in clinically meaningful ways.

The widespread polysubstance-dependence among SDI signif-
icantly complicates attempts to dissociate pre-existing biological
or personality characteristics from the effects of chronic use of dif-
ferent classes of drugs on neurocognitive functioning (Fernández-
Serrano et al., 2011; Gorodetzky et al., 2011; Baldacchino et al.,
2012). Further, we still know very little about the reversibility of
the observed neurocognitive deficits with abstinence, given that
with few exceptions (Ersche et al., 2005a,b; Clark et al., 2006)
most studies to date have focused on current drug users or on
SDI who have been abstinent for rather brief periods of time.
The chronic relapsing nature of addiction suggests that some of
the neurocognitive deficits, particularly those in decision-making,
may persist with abstinence and may be critically implicated in
increased susceptibility to relapse. In order to better understand
the brain’s recovery of function with protracted abstinence and to
refine treatment interventions at different stages of the addiction
cycle, it is crucial to get a better understanding of the specificity
and the persistence of the neurocognitive deficits observed in drug
users.

To address these challenges, we conducted the current study
in Bulgaria, where polysubstance dependence is still relatively
uncommon and where we have access to a unique population
of fairly “pure” (monosubstance-dependent) amphetamine and
heroin users who meet lifetime DSM-IV criteria for amphetamine
or heroin dependence. The heroin epidemic in Bulgaria started
in the early 1990s after the end of communism, when Bulgaria
became a key transit country for heroin trafficking due to its
strategic geographical position on the “Balkan Drug Route,” one
of the main routes for international drug traffic from South-
West Asia to Western Europe. Estimates show that at times
up to 80% of heroin used in Western Europe passes through
this route (European Monitoring Center for Drugs and Drug
Addiction, 2011). The heroin epidemic reached its peak in 1997–
1998, after which it plateaued. In the early 2000s, there were
an estimated 20–30,000 regular heroin addicts in Bulgaria (pop-
ulation of ∼7,476,000 people), which number has remained
steady over the last decade, with a recent trend for a slight
decline. Typically, heroin addicts belong to a cohort of somewhat
aging addicts, ∼30 years of age. In contrast, the amphetamine
epidemic in Bulgaria started more recently in the new millen-
nium when Bulgaria became a major center for production of
synthetic amphetamine-type stimulants and is currently one of
the top five highest-prevalence countries in Europe (European
Monitoring Center for Drugs and Drug Addiction, 2011). Hence,
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amphetamine users are typically younger—normally in their late
teens or early 20s. Notably, few SDI use the two types of drugs
concurrently.

We compared the decision-making performance of heroin and
amphetamine users to that of healthy controls (HC) without
any history of substance dependence. We followed these behav-
ioral analyses by applying a computational modeling approach,
in order to better characterize their decision-making styles and
to disentangle the distinct neurocognitive processes underlying
the decision-making performance of heroin and amphetamine
users. The modeling results and their interpretations depend on
which model we use. Therefore, we first identified the best-fitting
model by comparing three existing computational models using
a Bayesian model comparison technique, a simulation method,
and parameter recovery tests (see Materials and Methods below
for more details). Then, we compared groups in a Bayesian way
using the best-fitting model, but also tested whether we would
observe similar group differences with the other models. Based
on previous animal and human studies, we hypothesized that
amphetamine and heroin users would show distinct decision-
making profiles. Specifically, we expected that amphetamine users
would show increased reward sensitivity and heroin users would
show reduced loss aversion compared to HC (Spotts and Shontz,
1980; Stewart et al., 1984; Kreek et al., 2002).

In light of the growing evidence for the relationship of exter-
nalizing and internalizing personality traits and disorders with
decision-making and drug addiction, in exploratory analyses we
considered the relationship between impulsivity and psychopathy
(externalizing spectrum) and depression and anxiety (internal-
izing spectrum) with decision-making. We hypothesized that
externalizing but not internalizing traits and states would be
associated with compromised decision-making.

MATERIALS AND METHODS
PARTICIPANTS
Study participants included 129 individuals, enrolled in a larger
study of impulsivity in heroin and amphetamine users in Sofia,
Bulgaria. Potential participants were recruited via flyers placed at
substance abuse clinics, cafes, bars, and night clubs in Sofia and
screened via telephone and in-person on their medical and sub-
stance use histories. SDI had lifetime DSM-IV histories of opiate
or stimulant dependence. The current study included primarily
monosubstance-dependent users with no history of dependence
on alcohol or any drug other than opiates or stimulants (with
the exception of nicotine, caffeine, and/or past cannabis depen-
dence). Demographically similar individuals with no history of
substance dependence were included as controls. Study partici-
pants included 38 amphetamine users, 43 heroin users, and 48
HC. Most of the heroin and amphetamine users were in pro-
tracted abstinence at the time of testing (∼2.9 years on average
since they last met DSM-IV criteria for substance dependence,
minimum 3 months post discontinuation of drug use). Among
the 38 amphetamine users, 11 were in early (<12 months of
abstinence) full (n = 9; 24%) or partial (n = 2; 5%) remis-
sion and 27 were in sustained (>12 months of abstinence) full
(n = 25; 66%) or partial (n = 2; 5%) remission. Among the 43
heroin users, 12 (28%) were in early full remission, 30 (70%)

were in sustained full and one (2%) was in sustained partial
remission.

Inclusion criteria consisted of age between 18 and 50 years,
minimum of 8 years of formal education, ability to speak and read
Bulgarian, estimated IQ greater than 80, negative breathalyzer test
for alcohol and negative rapid urine toxicology screen for opiates,
cannabis, amphetamines, methamphetamines, benzodiazepines,
barbiturates, cocaine, MDMA, and methadone. Exclusion criteria
included history of neurologic illness or injury, history of psy-
chotic disorders, and current opioid substitution therapy (OST).
All participants were HIV-seronegative, as verified by rapid HIV
test. All participants provided written informed consent. Study
procedures were approved by the Institutional Review Boards of
the University of Illinois at Chicago and the Medical University in
Sofia on behalf of the Bulgarian Addictions Institute.

ASSESSMENT
History of substance abuse and dependence was determined
using the Structured Clinical Interview for DSM-IV Substance
Abuse Module (SCID-SAM; First et al., 1996). The Raven’s
Progressive Matrices was administered to index estimated IQ. For
the exploratory analyses, the Barratt Impulsiveness Scale—11th
revision (BIS-11; Patton and Stanford, 1995) indexed the per-
sonality trait of impulsivity. Psychopathy was assessed with the
Psychopathy Checklist: Screening Version (PCL:SV; Hart et al.,
1995). Current depression was assessed with the [Beck Depression
Inventory-II (BDI-II); Beck et al., 1996] and anxiety with the
[State-Trait Anxiety Inventory (STAI); Spielberger and Gorsuch,
1983]. For the exploratory analyses, we also tabulated several sub-
stance use characteristics including number of years of drug use,
length of abstinence from the primary drug of dependence, num-
ber of DSM-IV criteria met for the primary drug of dependence,
severity of nicotine dependence, and history of past cannabis
dependence.

IOWA GAMBLING TASK
Decision-making was measured with the computerized IGT
(Bechara et al., 1994, 2001), arguably the most popular decision
task in the addiction literature. The task requires participants to
select cards from one of four decks with the goal of maximizing
profits. Unbeknownst to participants, two of the decks (decks
C and D) are advantageous (“good”) and two (decks A and B)
are disadvantageous (“bad”) in terms of their long-term payoffs.
The frequencies of punishment also vary across decks such that
punishment is more frequent in decks A and C (50%) than
in decks B and D (10%). In the modified version of the IGT
(Bechara et al., 2001) used in the current study, each deck has
up to 60 cards and the amounts of net gains or losses increased
incrementally in every block of 10 cards. For example, the net
loss of decks A and B in the first block of 10 cards is -$250, but
across every block it goes up with $150 until it reaches $1000 in
the sixth block. Similarly, the net gain of decks C and D goes up
from $250 in the first block to $375 in the sixth block, with an
increment of $25 in each block of 10 cards. The frequencies of
punishment are identical to those in the original IGT version.
Participants have to learn the task contingencies by trial-and-
error. Healthy participants typically learn to select cards from the
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advantageous decks as the task progresses, thereby achieving a
higher cumulative reward value. Behavioral performance analyses
were based on the total net score, calculated by subtracting the
number of disadvantageous deck selections from the number of
advantageous deck selections. Trial-by-trial choice data of the
HC, amphetamine, and heroin groups are available at http://
figshare.com/articles/IGT_raw_data_Ahn_et_al_2014_Frontiers_
in_Psychology/1101324.

COMPUTATIONAL MODELING OF DECISION-MAKING
From a statistical perspective, the IGT is a four-armed ban-
dit problem (Berry and Fristedt, 1985), a special case of rein-
forcement learning (RL) problems in which an agent needs
to learn an environment by choosing actions and experienc-
ing the outcomes of those actions. Poor performance on the
IGT can be due to a number of distinct underlying neurocog-
nitive processes such as poor learning/memory, hypersensitivity
to reward, hyposensitivity to loss, or response inconsistency. In
order to better characterize behavioral performance on the IGT
and to disentangle the distinct neurocognitive processes under-
lying the performance of pure heroin and amphetamine users
on the task, we next used the computational modeling approach
(Busemeyer and Stout, 2002; Yechiam et al., 2005; Ahn et al.,
2008).

We compared three of the most promising models of the
IGT according to the literature (e.g., Ahn et al., 2008, 2011;
Steingroever et al., 2013, 2014; Worthy et al., 2013b): the Prospect
Valence Learning (PVL) model with delta learning rule (PVL-
Delta) (Ahn et al., 2008), the PVL model with decay reinforce-
ment learning rule (PVL-DecayRI) (Ahn et al., 2008, 2011), and
the Value-Plus-Perseverance model (VPP) (Worthy et al., 2013b).
We used Watanabe-Akaike Information Criterion (also called
Widely Applicable Information Criterion; WAIC) (Watanabe,
2010) to compare the post-hoc fits of models. We also used a
simulation method to examine whether a model with estimated
parameters can generate the observed choice pattern (Ahn et al.,
2008; Steingroever et al., 2014). We describe the mathematical
details of all models, which are also available in the previous pub-
lication (Worthy et al., 2013b) as well as WAIC and the simulation
method below.

Prospect valence learning (PVL) models (PVL-Delta and
PVL-DecayRI)
The PVL models have three components. The PVL-Delta and
PVL-DecayRI models are identical except that they use different
learning rules. First, the outcome evaluation follows the Prospect
utility function that has diminishing sensitivity to increases in
magnitude and different outcome sensitivity to losses vs. gains
(i.e., loss aversion). The utility, u(t) on trial t of each net outcome
x(t) is expressed as:

u(t) = x(t)α if x(t) ≥ 0
−λ|x(t)|α if x(t) < 0

(1)

Here α (shape parameter, 0 < α < 2) governs the shape of
the utility function and λ (loss aversion parameter, 0 < λ <

10) determines the sensitivity to losses compared to gains. Net

outcomes were scaled (all payoff outcomes were divided by a fixed
number) for cognitive modeling so that the median highest net
gain across subjects in the first block of 10 trials becomes 1 and
the largest net loss becomes −11.5 (Busemeyer and Stout, 2002).
If an individual has a high value of α, it indicates that he/she has
greater sensitivity to feedback outcomes than an individual with
a low value of α. Here, we extended the upper bound of α to be
greater than 1 as some individuals may have very high values of
α (e.g., Fridberg et al., 2010). A value of λ less than 1 indicates
that the individual is more sensitive to gains than to losses while a
value of λ greater than 1 indicates that he/she is more sensitive to
losses than to gains.

Based on the outcome of the chosen option, the expectan-
cies of the decks were computed using a learning rule. Previous
studies consistently show that the decay-reinforcement learning
(decayRI; Erev and Roth, 1998) has better post-hoc model-fits
than the delta (Rescorla-Wagner; Rescorla and Wagner, 1972) rule
on the IGT (Yechiam and Busemeyer, 2005, 2008; Ahn et al.,
2008) but the delta rule outperforms the decayRI learning rule
in simulation tests (Ahn et al., 2008; Steingroever et al., 2014). In
the decayRI learning rule, the expectancies of all decks are dis-
counted on each trial and then the expectancy of the chosen deck
is updated by the current outcome utility:

Ej(t + 1) = A · Ej(t) + δj(t) · u(t) (2)

A (recency parameter/learning rate, 0 < A < 1) determines how
much the past expectancy is discounted. δj(t) is a dummy vari-
able which is 1 if deck j is chosen and 0 otherwise. On the
other hand, in the delta rule, the expectancy of only the selected
deck is updated and the expectancies of the other decks remain
unchanged:

Ej(t + 1) = Ej(t) + A · δj(t) · (u(t) − Ej(t)) (3)

A determines how much weight is placed on past experiences of
the chosen deck vs. the most recent selection from the deck. A
low learning rate indicates that the most recent outcome has a
small influence on the expectancy and forgetting is more gradual.
A high learning rate indicates that the recent outcome has a large
influence on the expectancy of the chosen deck and forgetting is
more rapid. Note that we used the same symbol (A) for the learn-
ing models in the two PVL models, but A has different meaning
in each learning model (i.e., recency for the DecayRI and learning
rate for the Delta model).

The softmax choice rule (Luce, 1959) was then used to com-
pute the probability of choosing each deck j. θ (sensitivity)
governs the degree of exploitation vs. exploration:

Pr[D(t + 1) = j] = eθ ·Ej(t + 1)∑4
k = 1 eθ ·Ek(t + 1)

(4)

θ is assumed to be trial-independent and was set to 3c − 1
(Yechiam and Ert, 2007; Ahn et al., 2008). c is a consistency param-
eter (choice sensitivity), which was limited from 0 to 5 so that the
sensitivity ranges from 0 (random) to 242 (almost deterministic).
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Value-plus-perseverance model
Recent work suggests that participants often use a simple win-
stay-lose-switch (WSLS) or perseverative strategy on the IGT,
which cares only about the very last trial’s information for mak-
ing a decision on the current trial (Worthy et al., 2013a). Worthy
et al. (2013a) compared the PVL-DecayRI and the WSLS mod-
els of the IGT using model-comparison methods. They showed
that the PVL-DecayRI had the best model fits for about half of
the subjects, whereas the WSLS model was the best-fitting model
for the other half. Based on these findings, Worthy et al. (2013b)
developed a VPP model, which is a hybrid model (e.g., Daw et al.,
2011) of the PVL-Delta and a heuristic strategy of perseverance.
Worthy et al. (2013b) showed that the VPP model showed the
best post-hoc model-fits and simulation performance compared
to other models for the IGT in healthy individuals.

The VPP model assumes that a participant keeps track of
deck expectancies Ej(t) and perseverance strengths (Pj(t)). The
expectancies are computed by the learning rule of the PVL-Delta
model (Equation 3). For the perseverance strengths of unchosen
decks on the current trial t, Pj(t + 1) = k · Pj(t). For the chosen
deck:

Pj(t + 1) = k · Pj(t) + εp if x(t) ≥ 0
k · Pj(t) + εn if x(t) < 0

. (5)

Here, three additional free parameters related to perseverance are
introduced: k (0 < k < 1) is a decay parameter similar to A in
the PVL-DecayRI model, which determines how much the per-
severance strengths of all decks (including unselected decks) are
decayed on each trial. εp and εn indicate the impact of gain and
loss on perseverance behavior, respectively. A positive value would
indicate that the feedback reinforces a tendency to persevere on
the same deck on the next trial whereas a negative value would
indicate that the feedback reinforces a tendency to switch from
the chosen deck.

The overall value, Vj(t + 1), is the weighted sum of Ej(t + 1)
and Pj(t + 1):

Vj(t + 1) = ω · Ej(t + 1) + (1 − ω) · Pj(t + 1) (6)

Here ω is the RL weight (0 < ω < 1). A low value of ω would
indicate that the subject would rely less on RL but more on the
perseverance heuristic. A high value of ω would indicate that
the subject would rely more on RL and less on the perseverance
heuristic. In the VPP model, the choice probability was again
using the softmax rule but with Vj(t + 1):

Pr[D(t + 1) = j] = eθ ·Vj(t + 1)∑4
k = 1 eθ ·Vk(t + 1)

. (7)

STATISTICAL ANALYSES
All data analyses were conducted using Bayesian data analysis,
which has several advantages over null hypothesis significance
testing (NHST) (Wagenmakers, 2007; Kruschke, 2010, 2011b,
2013): In Bayesian analysis, decisions are based on posterior prob-
abilities of parameters (which could be model indices), not on
frequentist p values. Unlike posterior distributions, frequentist

p values depend on the sampling and testing intentions of the
analyst. Bayesian methods also seamlessly provide posterior dis-
tributions for the type of complex hierarchical models we use
here, more flexibly than deriving p values. For clarity and to
accommodate readers more familiar with NHST, we report in
parallel NHST results whenever appropriate and when there are
compatible NHST approaches available. We used the posterior
means of individual parameters for NHST and regression anal-
yses. For Bayesian multiple regression and correlation analyses,
we used robust regression methods so that outliers don’t critically
affect the inferred regression coefficients and hierarchical models,
which reduces the risk of “false alarms.”

Posterior distributions on parameters are summarized by their
central tendency (i.e., mean or mode) and by their highest density
interval (HDI), which is the range of parameter values that span
95% of the distribution and have higher probability inside the
interval than outside. The HDI can also be used to make decisions
in conjunction with a region of practical equivalence (ROPE)
around parameter values of interest such as zero (Kruschke,
2011a,b). If the ROPE excludes the HDI, then the ROPE’d value
is said to be not credible. If the ROPE includes the HDI, then the
ROPE’d value is said to be accepted for practical purposes. We
leave the ROPE tacit in our analyses, as its exact size is not crit-
ical for our main conclusions. However, when the HDI excludes
the value of interest (such as zero) but has a end not far from the
value of interest, then a moderately large ROPE would overlap
with the HDI and render the result indecisive.

Hierarchical Bayesian parameter estimation
The free parameters of each model were estimated using hierar-
chical Bayesian analysis (HBA), an emerging method in cognitive
science (Lee, 2011). HBA allows for individual differences, while
pooling information across individuals in a coherent way. Unlike
the conventional way of parameter estimation (maximum likeli-
hood estimation; MLE), Bayesian methods estimate full posterior
distributions of parameter values rather than only point esti-
mates. In addition, commonalities across individuals are captured
by letting group tendencies inform each individual’s parameter
values. A recent simulation study also revealed that HBA yields
much more accurate parameter estimates of the PVL-DecayRI
model than non-hierarchical MLE methods. Specifically, a sim-
ulation study by Ahn et al. (2011) showed that non-hierarchical
MLE estimates were often at the parameters’ boundary lim-
its (e.g., learning rate = 1) whereas parameter estimates with
HBA showed much less discrepancy with actual parameter val-
ues. These results suggest that HBA would be a better method to
capture individual differences in model parameters.

To perform HBA, we used a recently developed package
called Stan 2.1.0 (Stan Development Team, 2014), which uses
Markov chain Monte Carlo (MCMC) sampling algorithms called
Hamiltonian Monte Carlo (HMC). The HMC allows efficient
sampling even for complex models with multilevel structures and
those with highly correlated parameters. Individual parameters
were assumed to be drawn from group-level normal distributions.
Normal and uniform distributions were used for the priors of
normal means (μ(.)) and standard deviations (σ(.)), respectively
(Wetzels et al., 2010; Steingroever et al., 2013). For parameters
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(say ζ for a general parameter for illustration purposes) that are
bounded between 0 and 1 (e.g., A, k, ω):

μξ ′ ∼ Normal (0, 1), σξ ′ ∼ Uniform (0, 1.5),

ξ ′ ∼ Normal (μξ ′ , σξ ′), ξ = Probit (ξ ′) (8)

While Worthy et al. (2013b) set the boundary limits of εp and εn

at [−1, 1], we set no bound constraints on εp and εn. We believe
such boundary limits are useful for practical purposes in MLE
but not in HBA methods. For those parameters with no bound
constraints:

ξ ∼ Normal (μξ , σξ ), μξ ∼ Normal (0, 5),

σξ ∼ Uniform (0, 1.5) (9)

For parameters that are constrained to be greater than zero but
with an upper limit (=U) (e.g., U = 2 for α, U = 10 for λ, U = 5
for c), we used the following transformations to allow a flat prior
distribution over a full range:

μξ ′ ∼ Normal (0, 1), σξ ′ ∼ Uniform (0, 1.5),

ξ ′ ∼ Normal (μξ ′ , σξ ′), ξ = U · Probit (ξ ′) (10)

We also reparameterized parameters (i.e., parameters are
sampled as independent unit normals and then transformed
accordingly for each parameter), which can be effective for com-
plex hierarchical models, as suggested by Stan developers (see
Chapter 19 “Optimizing Stan Code” of the Stan 2.1.0 Manual;
https://github.com/stan-dev/stan/releases/download/v2.1.0/stan-
reference-2.1.0.pdf).

A total of 2000 samples were drawn after 1000 burn-in sam-
ples for each of 3 chains (=2000 samples × 3 chains = a total
of 6000 samples). We estimated individual and group parameters
separately for each population (HC, amphetamine, and heroin
groups). For each parameter, the Gelman-Rubin test (Gelman and
Rubin, 1992) was used to check the convergence of the chains
(a.k.a. R̂ statistic). R̂ values close to 1.00 would indicate that
MCMC chains are converged to the target distributions. In our
data, all model parameters of all models had R̂ values of 1.00.
MCMC chains were also visually inspected, which confirmed
excellent mixing of MCMC samples. Effective sample sizes (ESS)
of model parameters, which are related to autocorrelation and
mixing of MCMC chains (i.e., a smaller ESS is related to higher
autocorrelation), were typically greater than 1000 (out of 6000
total samples). The minimum ESS of hyper-parameters was 561 in
the two PVL models, and 372 in the VPP model. Visual inspection
of the parameters with smaller ESSs confirmed their convergence
to target distributions.

Model comparisons using WAIC
WAIC is a way to estimate a model’s predictive accuracy with bias
correction from over-fitting like Akaike Information Criterion
(AIC; Akaike et al., 1973) and Deviance Information Criterion
(DIC; Spiegelhalter et al., 2002). As a measure of predictive accu-
racy, the log predictive density or log-likelihood, log p(y|θ), is

commonly used where y and θ indicate data and model parame-
ters, respectively. WAIC is “a more fully Bayesian approach” that
uses log pointwise posterior predictive density (lppd) and a cor-
rection (or penalty) term, each of which can be computed from
MCMC samples made available from (hierarchical) Bayesian
parameter estimation (for reviews and more details, see Gelman
et al., 2013a,b).

Computed lppd (for each participant i; subscript i is omitted
for convenience) is defined as:

T∑
t = 1

log

(
1

S

S∑
s = 1

p
(
yt |θ s)) (11)

Here θ s are posterior MCMC samples (s = 1, 2, . . . , S) and T is
the number of trials (data points). Note that the likelihood dom-
inates the posterior under standard conditions where a posterior
distribution approaches a normal distribution (Degroot, 1970;
Gelman et al., 2013a,b).

There is a correction term that adjusts for the effective number
of parameters and overfitting. There are two types of adjustments
(pWAIC1 and pWAIC2) (Gelman et al., 2013a,b). Gelman et al.
(2013a,b) recommended pWAIC2 because of its closer relationship
with leave-one-out cross validation than pWAIC1. We report results
using pWAIC2 but both adjustments yielded very similar values.
Computed pWAIC2 (for each participant i, subscript i is omitted
for convenience here) is defined as:

T∑
t = 1

VS
s = 1

(
log p

(
yt |θ s)) (12)

where VS
s = 1 indicates the sample variance (i.e., the variance of

log p(yt |θ s) over S samples). WAICi for each participant i is
defined like the following so that its value is on the deviance scale
like AIC, DIC, and BIC (Schwartz, 1978).

WAICi = −2 ∗ (lppd − pWAIC2) (13)

We computed lppd and pWAIC2 by rewriting the separate like-
lihood function in R (R Development Core Team, 2009) but
it is also possible to implement WAIC in a Stan code directly
(Vehtari and Gelman, under review). Specifically; we first ran-
domly sampled 1,000 (S = 1,000 in Equations 11 and 12)
posterior samples from each subject’s individual posterior dis-
tributions. We used posterior individual distributions (instead
of group distributions) for the calculation because our goal was
to replicate new data and evaluate predictive accuracy in exist-
ing groups. Then we prepared a matrix of each subject for
trial-by-trial predictive density (p(yt |θ s), matrix size = num-
ber of samples × number of trials = 1000 × 100). Trial-by-trial
predictive density was computed for each subject using each
posterior sample separately. Then, using Equations (11–13), we
computed lppd, pWAIC2, and WAICi for each participant, and then
summed WAICi over all participants for each model (Table 3).
The R codes for performing HBA and computing WAIC are
available by request to the first author (Woo-Young Ahn;
wooyoung.ahn@gmail.com).
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Simulation method
We also used a simulation method to evaluate how accurately a
model can generate observed choice pattern in new and unob-
served payoff sequences based on parameter values alone (Ahn
et al., 2008; Fridberg et al., 2010; Steingroever et al., 2013, 2014).
Using the procedure in Appendix B of Ahn et al. (2008) and indi-
vidual posterior means as a subject’s best fitting parameters, we
tested the simulation performance of each model. We set the max-
imum number of trials to 100 and used the payoff schedule of the
modified IGT. We only report the results using individual poste-
rior means but we note that running simulations using random
draws from individual posteriors (Steingroever et al., 2013, 2014)
yielded very similar results (not reported for brevity).

Parameter recovery tests
Using parameter recovery tests, we tested the adequacy of
each model, specifically how well each model can recover true
parameter values that were used to simulate synthetic data (Ahn
et al., 2011; Steingroever et al., 2013). We simulated HC par-
ticipants’ performance on the modified IGT assuming that they
behaved according to each model. We generated true parameter
values based on the individual posterior means of the HC group.
Then we simulated synthetic behavioral data based on the param-
eters, and then recovered their parameter values using the HBA
described in Section Hierarchical Bayesian Parameter Estimation.
See Appendix for the details.

Hierarchical Bayesian multiple regression analyses
For multiple regression analyses, often many candidate predictors
are included in the model, which increases the risk of erroneously
deciding that a regression coefficient is non-zero. In many cases,
regression coefficients are distributed like a t distribution, such
that the predicted variable has non-significant correlations with
most candidate predictors, but a sizable relationship with only a
few predictors. Also, some predictors are substantially correlated
with each other, which suggests that estimating regression coeffi-
cients separately for each predictor can possibly be misleading.

We assigned a higher-level distribution across the regres-
sion coefficients of the various predictors. Specifically, regres-
sion coefficients came from a t distribution with parame-
ters (mean, scale, and df) estimated from the data. Because
of this hierarchical structure, estimated regression coefficients
experience shrinkage and are less likely to produce false
alarms. We used the program “MultiLinRegressHyperJAGS.R”
from Kruschke (2011b), available at http://www.indiana.edu/%
7Ekruschke/DoingBayesianDataAnalysis/Programs/.

We used Just Another Gibbs Sampler (JAGS) for MCMC
sampling and for posterior inference of regression analyses. For
each analysis, a total of 50,000 samples per chain were drawn
after 1000 adaptive and 1000 burn-in samples with three chains.
For each parameter, the Gelman-Rubin test was run to confirm
the convergence of the chains. R̂ mean values were 1.00 for all
parameters.

Bayesian estimation for group comparisons
For Bayesian estimation for group differences, (e.g., on behav-
ioral performance, Figure 1), we used Bayesian estimation

FIGURE 1 | Behavioral performance on the IGT (net score of

“advantageous”—“disadvantageous” choices) of amphetamine,

heroin, and healthy control groups. The 100 trials were divided into five
blocks of 20 trials. Shaded regions indicate ±1 s.e.m.

(BEST) codes that are available at: http://www.indiana.
edu/∼kruschke/BEST/. The analysis is implemented in JAGS and
we used a total of 50,000 samples after 1000 adaptive and 1000
burn-in samples were drawn. R̂ mean values were 1.00 for all
parameters. For more details about BEST, see Kruschke (2013).

RESULTS
PARTICIPANTS’ CHARACTERISTICS
Table 1 shows demographic and substance use characteristics of
participants. The groups differed on age, such that HC individ-
uals were younger than heroin users [95% HDI from 3.5 to 6.8,
mean of HDI = 5.1; t(89) = 4.81, p = 6.11E-06] and older than
amphetamine users [95% HDI from 0.1 to 3.4, mean of HDI =
1.8; t(84) = 2.11, p = 0.037], reflecting the timeline of heroin and
amphetamine influx in Bulgaria. HC individuals had higher IQ
than both amphetamine [95% HDI from 0.4 to 11.1, mean of
HDI = 6.0; t(84) = 2.28, p = 0.025] and heroin users [95% HDI
from 2.9 to 12.8, mean of HDI = 7.8; t(89) = 3.13, p = 0.002],
but there was no difference between the two drug-using groups
[95% HDI from −7.8 to 3.6; mean of HDI = −2.0; t(79) = 0.66,
p = 0.510].

As reported in Table 2, the two drug using groups scored
higher on trait impulsivity (BIS-11) [HC vs. Amphetamine: 95%
HDI from 5.5 to 14.9, mean of HDI = 10.2; t(83) = 4.66, p =
1.19E-05; HC vs. Heroin: 95% HDI from 5.6 to 13.7, mean of
HDI = 9.7; t(88) = 4.87, p = 4.90E-06] and psychopathy
(PCL:SV) [HC vs. Amphetamine: 95% HDI from 4.0 to 7.7,
mean of HDI = 5.8; t(84) = 6.49, p = 5.72E-09; HC vs. Heroin:
95% HDI from 7.4 to 11.1, mean of HDI = 9.3; t(89) = 10.62,
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Table 1 | Demographic and substance use characteristics of participants.

Healthy control (HC) Amphetamine (A) Heroin (H) Sig.f

(N = 48) (N = 38) (N = 43)

Agea 24.7 (4.9) 22.7 (3.7) 29.7 (5.0) p < 0.001

Gender (%male) 79.2 76.3 81.4 p = 0.85

IQb 112.5 (11.3) 106.7 (12.5) 104.9 (11.9) p = 0.007

Education (years)c 13.8 (2.2) 12.5 (1.7) 13.3 (2.5) p < 0.001

Years of amph./heroin use – 3.2 (2.3) 7.2 (3.5) p < 0.001

Years of any drug use – 6.5 (2.7) 10.8 (3.6) p < 0.001

# of amph./heroin DSM-IV dependence criteria met – 4.9 (1.3) 6.1 (1.0) p < 0.001

Time (years) since last met dependence criteria – 2.8 (1.6) 2.9 (2.2) p = 0.89

Fagerstrom test of nicotine dependenced 0.7 (1.6) 3.3 (2.8) 4.7 (2.7) p < 0.001

Min–Max days since last drug use – 90–2190 152–3285 –

Past cannabis dependence (%)e 0 12 (32%) 6 (14%) p < 0.001

aH > HC > A (Bayesian and NHST t-tests yielded the same conclusions).
bHC > A, H (Bayesian and NHST t-tests yielded same conclusions).
cHC > A (Bayesian and NHST t-tests yielded same conclusions).
d H >A > HC (Bayesian and NHST t-tests yielded same conclusions).
eA > H > HC (Bayesian and NHST χ -square tests yielded same conclusions).
f Sig. results are based on omnibus NHST ANOVA tests.

Table 2 | Personality and psychopathology characteristics of

participants.

HC A H Group

comparisons

BIS total 55.96 (9.1) 66.13 (11.0) 65.70 (9.9) HC < A, H

BIS attention 14.28 (3.7) 16.32 (4.1) 16.56 (5.3) HC < A, H

BIS motor 20.40 (3.8) 25.18 (5.2) 23.12 (5.0) HC < A, H

BIS nonplanning 21.23 (4.3) 24.63 (4.4) 25.70 (3.9) HC < A, H

PCL:SV 3.67 (3.2) 9.34 (4.9) 12.19 (4.4) HC < A < H

BDI-II total 4.21 (4.1) 6.62 (5.6) 8.26 (6.4) HC < A, H

State anxiety (STAI-S) 29.42 (5.9) 33.68 (7.7) 36.12 (10.1) HC < A, H

Trait anxiety (STAI-T) 34.33 (8.7) 38.58 (9.3) 39.98 (10.1) HC < A, H

All group comparison results are based on Bayesian tests. HC, healthy con-

trols; A, amphetamine; H, heroin; BIS, Barratt Impulsiveness Scale; PCL:SV,

Psychopathy Checklist: Screening Version; BDI-II, Beck Depression Inventory-II;

STAI, State Trait Anxiety Inventory.

p = 2.20E-16] than HC individuals. Comparisons between the
two drug using groups revealed that heroin users had higher lev-
els of psychopathy than amphetamine users [HDI from 0.8 to 5.1,
mean of HDI = 3.0; t(79) = 2.73, p = 0.008]. Both amphetamine
and heroin users scored higher on depression (BDI-II) [HC
vs. Amphetamine: 95% HDI from −4.4 to −0.5, mean of
HDI = −2.3; t(82) = 2.26, p = 0.026; HC vs. Heroin: 95% HDI
from −5.8 to −1.7, mean of HDI = −3.8; t(88) = 3.59, p =
5.40E-04], state anxiety (STAI-S) [HC vs. Amphetamine: 95%
HDI from −7.7 to −1.6, mean of HDI = −4.5; t(84) = 2.90,
p = 4.7E-04; HC vs. Heroin: 95% HDI from −9.7 to −2.5,
mean of HDI = −6.4; t(89) = 3.90, p = 1.80E-04], and trait anx-
iety (STAI-T) [HC vs. Amphetamine: 95% HDI from −8.5
to −0.3, mean of HDI = −4.4; t(84) = 2.18, p = 0.032; HC vs.
Heroin: 95% HDI from −10.0 to −1.3, mean of HDI = −5.6;

t(89) = 2.86, p = 0.005] than HC individuals. There were no
differences between the two drug using groups on these measures.

BEHAVIORAL RESULTS
Behavioral results revealed that the HC group made more advan-
tageous choices than the heroin group [difference of mean net
score (advantageous—disadvantageous choices per five blocks of
20 trials) = 2.77, 95% HDI from 0.7 to 4.8, mean of HDI = 2.8;
t(90) = 2.80, p < 0.010] and marginally than the amphetamine
group [difference of mean net score = 1.14, 95% HDI from −0.1
to 2.3, mean of HDI = 1.9; with 95.3% of the posterior sam-
ples were greater than 0; t(84) = 2.02, p = 0.047]. There were
no behavioral differences between the two drug using groups in
terms of net scores (see Figure 1). Further, the choice patterns
of these two groups were qualitatively different from those of
the HC group. As shown in Figures S1–S3 (left), whereas the
HC group favored one of the advantageous decks (Deck D) as
the task progressed, both amphetamine and heroin users consis-
tently favored the disadvantageous deck B throughout the task.
Decks B and D carry low-frequency losses and are usually cho-
sen more often than decks with high-frequency losses such as A
and C, yet one is disadvantageous (Deck B) whereas the other
one is advantageous (Deck D). Our results demonstrate that past
drug users who are currently in protracted abstinence continue
to show similar preference for disadvantageous decks as cur-
rently dependent drug users (Bechara et al., 2001; Yechiam et al.,
2005).

MODEL COMPARISONS RESULTS
We first checked which model provided the best predictive accu-
racy, as measured by WAIC. Table 3 presents WAIC scores for
each model, summarized for each group. Note that the smaller
a model’s values of WAIC scores are, the better its model-fits are.
As noted in Table 3, the VPP model provided the best model-fits
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Table 3 | WAIC scores of each model, computed separately for each

group.

Model WAICHC WAICA WAICH WAICSum

VPP 11659.4 9114.7 10168.1 30942.2

PVL-DecayRI 12145.6 9521.0 10752.4 32419.0

PVL-Delta 12448.8 9747.3 11036.4 33232.5

The best-fitting model in each group is underlined.

HC, healthy controls; A, amphetamine; H, heroin.

relative to the other models in all groups, followed by the PVL-
DecayRI. These results are consistent with previous reports from
Worthy et al. (2013b).

The simulation method and parameter recovery tests yielded
somewhat different findings (Figures S1–S3). Consistent with
previous reports (Ahn et al., 2008; Fridberg et al., 2010;
Steingroever et al., 2013, 2014), the PVL-Delta model showed
good simulation performance in all three groups, adequately pre-
dicting the rank order of four decks and good parameter recovery
(Figure A3). The PVL-DecayRI model also captured the global
pattern of deck preference in all groups even if it failed to fully
capture the preference reversal of certain decks over trials (e.g.,
decks A and C in the heroin group, Figure S3). Parameter recov-
ery tests yielded somewhat mixed results (Figure A2): A (decay
rate) and c (response consistency) were recovered well, but per-
formance on α (reward sensitivity) and λ (loss aversion) were
not as good as with the PVL-Delta. The VPP model, on the other
hand, showed the worst simulation and parameter recovery per-
formance: the model over-estimated the preference of deck C in
the HC and amphetamine groups and failed to predict the prefer-
ence of deck C over deck A in the heroin group. These results are
inconsistent with the simulation results of Worthy et al. (2013b),
in which the VPP model showed the best simulation performance.
However, HC participants in Worthy et al. (2013b) continued to
prefer the disadvantageous deck (Deck B) throughout the task,
unlike our HC participants who preferred the advantageous Deck
D. Worthy et al. (2013b) reported simulation performance by
averaging choice probabilities across all trials in each deck (Figure
2A in Worthy et al., 2013b). If we used the same criterion, the VPP
model performs quite well for the heroin group, in which deck B
is most strongly preferred and preference for decks A and C are
similar on average. Another major difference between our study
and Worthy et al. (2013b) is the parameters used for the simula-
tion method: Worthy et al. (2013b) used MLE estimates whereas
we used HBA estimates, which may lead to somewhat differ-
ent simulation performance. With respect to parameter recovery
(Figure A1) with the VPP model, posterior distributions of sev-
eral parameters were very broad (e.g., ω) and some parameters
were not well estimated (e.g., k), which might be attributed to its
higher number of parameters compared to the two PVL models
(8 vs. 4).

Next, we used the best-fitting (VPP) model to compare the
three groups (Figure 2 and Table 4). Heroin users displayed
reduced loss aversion (λ) compared to HC [95% HDI from −1.2
to −0.2, mean of HDI = −0.7; t(89) = 8.33, p = 9.024E-13] and
amphetamine users [95% HDI from 0.1 to 1.1, mean of HDI =

0.6; t(79) = 6.82, p = 1.63E-09] (see Figure 3 for the 95% HDI of
group differences between heroin and HC groups and Figures S4,
S5 for the 95% HDI of group differences between amphetamine
and other groups). In contrast, our hypothesis that reward sensi-
tivity (α) would be higher in amphetamine users compared to
HC was not supported. The learning rate (A) was marginally
different between the heroin and the HC groups [95% HDI
from −0.0 to 0.2, mean of HDI = 0.1; t(89) = 4.91, p = 4.08E-06,
Figure 3].

We further checked whether the group differences we found
using the best-fitting (VPP) model are consistent when tested
with other models (PVL-DecayRI and PVL-Delta). Tables 5, 6
summarize the mean group parameter estimates of the PVL-
DecayRI (see Figures S6–S8 for the 95% HDI of group differ-
ences) and PVL-Delta (see Figures S9–S11 for the 95% HDI of
group differences), respectively. As seen in Figures 3, S6, and
S9, we consistently found reduced loss aversion in heroin users
compared to HC, whichever model we used. The PVL-DecayRI
model showed increased reward sensitivity (α parameter) in
amphetamine users compared to HC [Figure S7, 95% HDI from
0.0 to 0.5, mean of HDI = 0.3; t(84) = 6.26, p = 1.53E-08], which
was not replicated with other models.

Given that the groups differed on age, IQ, and education,
we conducted NHST Analysis of Covariance (ANCOVA) tests
to examine whether group differences on model parameters
remain significant after controlling for these factors. Dependent
variables were model parameter values (individual posterior
means), group membership (e.g., HC vs. amphetamine groups)
was the categorical independent variable, and covariates were
age, IQ, and education. With any model (VPP, PVL-DecayRI,
or PVL-Delta), group difference on loss aversion between heroin
and HC groups remained significant [e.g., with the VPP model,
F(1, 86) = 26.06, p = 1.16E-13]. The group difference on reward
sensitivity between amphetamine and HC groups with the
PVL-DecayRI model also remained significant [F(1, 81) = 46.28,
p = 1.61E-09].

EXPLORATORY ANALYSES: ASSOCIATIONS OF MODEL PARAMETERS
WITH SUBSTANCE USE AND PERSONALITY CHARACTERISTICS
Next, we examined associations of model parameters of the
impaired neurocognitive processes (loss aversion for heroin users
using the VPP model) with substance use characteristics (num-
ber of years of drug use, length of abstinence from primary drug,
number of DSM-IV criteria met for primary drug of dependence,
nicotine dependence, and past cannabis dependence), impulsive
personality traits (BIS-11) and impulse-related personality dis-
orders (PCL:SV). As noted earlier, we used hierarchical robust
Bayesian multiple linear regression, which has a hyperdistribution
on regression coefficients across predictors and large-tail distri-
butions to accommodate outliers. The results showed that loss
aversion in heroin users was not predicted by any variable (Figure
S12 for the robust Bayesian multiple linear regression results).
None of the regressors were significant (p < 0.05 with NHST).

In contrast to our null findings with the VPP model, we
found two associations when we used the affected parameters
from the PVL-DecayRI model (loss aversion for heroin users
and reward sensitivity for amphetamine users). In heroin users,
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FIGURE 2 | Density plots of posterior group parameter distributions

with the Value-Plus-Perseverance (VPP) model. Bottom and top tick
marks indicate HDI 95% range, and middle tick marks indicate mean

values for each group. Density plots range from 0.01 to 99.99% of
posterior distributions. HC, Healthy Control group; AMPH, Amphetamine
group; HERO, Heroin group.

Table 4 | Means and standard deviations (in parentheses) of group

mean parameters with the VPP model.

VPP parameters HC A H

Learning rate (A) 0.010 (0.008) 0.019 (0.011) 0.070 (0.044)
Reward sensitivity (α) 0.518 (0.149) 0.374 (0.137) 0.481 (0.159)
Response sensitivity (c) 2.017 (0.419) 1.894 (0.329) 1.368 (0.125)
Loss aversion (λ)a 0.717 (0.273) 0.593 (0.275) 0.023 (0.033)
Perseverance after gain
(εp)

−0.001 (0.154) −0.181 (0.179) 0.050 (0.204)

Perseverance after loss
(εn)

−0.726 (0.296) −0.500 (0.297) −0.249 (0.192)

Perseverance decay
rate (k)

0.481 (0.062) 0.404 (0.067) 0.337 (0.073)

RL weight (ω) 0.825 (0.110) 0.714 (0.183) 0.677 (0.078)

HC, healthy controls; A, amphetamine; H, heroin.
aHC, A > H.

loss aversion (λ) was predicted by impulsive personality traits
(BIS-11 total score; mean coefficient = −0.027, 95% HDI from
−0.05 to −0.00, mean of HDI = −0.03) (Figure S13). In con-
trast, in amphetamine users, reward sensitivity was predicted by

number of years of drug use (mean coefficient = 0.042, 95% HDI
of group differences from 0.01 to 0.07, mean of HDI = 0.04,
see Figure S14). Other variables were not associated with model
parameters. Correlational analyses with internalizing characteris-
tics (depression and anxiety) revealed no associations with model
parameters.

DISCUSSION
This is the first human study that uses a computational model-
ing approach to investigate neurocognitive functioning in rela-
tively pure amphetamine and heroin users. Our behavioral results
reveal that heroin users show more disadvantageous decision-
making performance than HC; however, their performance was
not different from that of amphetamine users. These results are
in line with the persistent nature of decision-making deficits
observed among opiate addicts in particular (Vassileva et al.,
2007b; Fernández-Serrano et al., 2011; Li et al., 2013). Critically,
our computational modeling findings suggest that amphetamine
and heroin users may be characterized by dissociable decision-
making biases even within the context of no overt behavioral
differences in performance. When we compared groups using
the best-fitting (VPP) model, heroin users showed reduced loss
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FIGURE 3 | Posterior distributions of differences of group mean parameters between the heroin and the healthy control (HC) groups, with the VPP

model. HDI, highest density interval.

Table 5 | Means and standard deviations (in parentheses) of group

mean parameters with the PVL-DecayRI model.

PVL DecayRI HC A H

parameters

Decay rate (A) 0.736 (0.068) 0.809 (0.072) 0.730 (0.087)

Reward sensitivity (α)a 0.053 (0.043) 0.310 (0.129) 0.122 (0.074)

Response sensitivity (c) 0.216 (0.038) 0.186 (0.040) 0.210 (0.050)

Loss aversion (λ)b 1.262 (0.543) 0.910 (0.494) 0.110 (0.108)

HC, healthy controls; A, amphetamine; H, heroin.
aHC < A.
bHC > H.

aversion relative to amphetamine users and HC. Notably, the
reduced loss aversion among heroin users compared to healthy
individuals was robust across all models we tested. With regards to
amphetamine users, we did not find any distinct decision-making
profile using the best-fitting VPP model. However, when using
the PVL-DecayRI model, which had the second best model-fits
in our data, amphetamine users showed greater reward sensitivity
than HC. These group differences were at the outcome evaluation
stage according to a recent framework of value-based decision-
making (Rangel et al., 2008) and putatively reflect an emotional
and activation type of self-regulation (Bickel et al., 2012).

We tested three existing cognitive models to compare the two
drug user groups with HC. Consistent with previous reports
(Worthy et al., 2013b), we found that the VPP model was the

Table 6 | Means and standard deviations (in parentheses) of group

mean parameters with the PVL-Delta model.

PVL Delta parameters HC A H

Learning rate (A) 0.037 (0.019) 0.035 (0.018) 0.172 (0.080)

Reward sensitivity (α) 0.382 (0.126) 0.283 (0.116) 0.475 (0.123)

Response sensitivity (c) 1.285 (0.204) 1.292 (0.181) 0.947 (0.147)

Loss aversion (λ)a 0.650 (0.240) 0.376 (0.220) 0.060 (0.055)

HC, healthy controls; A, amphetamine; H, heroin.
aHC > H.

best-fitting model when measured by WAIC, followed by the
PVL-DecayRI and the PVL-Delta. However, it should be noted
that the VPP model has twice as many parameters as other mod-
els (8 vs. 4) and showed the worst simulation and parameter
recovery performance compared to the two PVL models. In con-
trast, Worthy et al. (2013b) show good simulation performance
for the VPP model in their dataset; however, there are two major
differences between their study and ours. First, in Worthy et al.
(2013b), control participants preferred the disadvantageous deck
(Deck B) throughout the task, similar to the amphetamine and
heroin groups in our study. Indeed, the simulation performance
of the VPP model is quite good for the heroin group if we col-
lapse trial-by-trial simulation performance over trials on each
deck. Second, Worthy et al. (2013b) used MLE estimates instead
of HBA estimates. Thus, it remains to be determined whether the
poor simulation performance of the VPP model in our datasets is
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due to its over-complexity, the limited generalizability of specific
behavioral patterns, or to differences in the parameter estimation
methods. It would also be helpful to perform external valida-
tion tests (e.g., Wallsten et al., 2005) because the parameters of a
model with good model-fits do not necessarily reflect underlying
psychological constructs (Riefer et al., 2002). In this study, each
participant performed only up to 100 trials: Even if hierarchi-
cal modeling allowed us to pool information across individuals,
100 trials might not contain enough information to reliably esti-
mate 8 free parameters and capture true underlying psychological
constructs. It might be related to the fact that behaviorally the
amphetamine group showed different choice patterns from the
HC group but none of their model parameter values are credi-
bly different from those of the HC group. As seen in Figure 2,
several parameters of the amphetamine group are “sub-optimal”
compared to the HC group (e.g., εn, k, and ω) but the group
differences did not reach the threshold of credible group differ-
ence. It is possible that deficits in the amphetamine group were
decomposed into several parameters, instead of into one or two
parameters in the VPP model. It may be necessary and help-
ful to develop new models with fewer model parameters based
on the psychological and neuroscience literature by using model
comparison methods and performing external validation.

There are a few previous studies using the PVL-DecayRI
(Vassileva et al., 2013) or the PVL-Delta (Fridberg et al.,
2010) model to study decision-making processes in drug users.
Consistent with our results, both chronic (current) marijuana
users (Fridberg et al., 2010) and polysubstance (former) users
(Vassileva et al., 2013) showed reduced loss aversion compared
to HC. On the other hand, chronic marijuana users also exhib-
ited higher reward sensitivity, impaired learning/memory, and
reduced response consistency compared to HC when tested with
the PVL-Delta model (Fridberg et al., 2010). Polysubstance use
was also associated with impaired learning/memory when tested
with the PVL-DecayRI model (Vassileva et al., 2013). Stout et al.
(2004) used the EVL model and MLE method for parameter esti-
mation, and reported reduced attention weight to loss among
current cocaine users compared to HC. In the EVL model, the
w parameter (attention weight to loss vs. gain) incorporates both
reward sensitivity and loss aversion; therefore, it is difficult to
directly compare the findings from Stout et al. (2004) with our
results. However, it is likely that one or both of the two processes
was impaired in current cocaine users in the Stout et al. (2004)
study.

It should be also noted that the mean w parameter (RL weight)
value was greater than 0.5 in all groups (Figure 2), suggesting
that overall RL was a primary strategy in all groups. Worthy et al.
(2013b) reported that the mean w parameter of healthy individu-
als was 0.49, which is the mean value of MLE individual estimates.
In addition to the difference in parameter estimation methods,
we also found some differences in the choice patterns of the three
groups. As seen in Figure S1, healthy control individuals in our
study eventually preferred the advantageous deck (Deck D) as the
task progressed. On the other hand, healthy individuals in Worthy
et al. (2013b) continued to prefer the disadvantageous deck (Deck
B) throughout the task, which was the deck preferred by both
heroin and amphetamine users in our study. It remains unclear

why the two drug user groups, which showed similar behavioral
patterns to participants in Worthy et al. (2013b), showed w value
greater than 0.5 on average. A future study will be necessary to
replicate the findings.

This is one of the very few studies that investigate
amphetamine and heroin users in protracted abstinence (Ersche
et al., 2005a,b; Clark et al., 2006). Our results indicate that
decision-making deficits previously reported with current drug
users (Bechara et al., 2001; Yechiam et al., 2005) may persist
long after discontinuation of drug use and appear particularly
pronounced in heroin users. These deficits and decision-making
biases may have existed prior to onset of drug use and thereby
could have contributed to an increased susceptibility to develop
addiction, in line with longitudinal studies with adolescents,
which show that poor response inhibition and behavioral dys-
function often precede onset of drug use and contribute to
the development of addiction (Nigg et al., 2006; Wong et al.,
2006). Alternatively, these deficits and biases may reflect residual,
enduring and possibly irreversible effects of chronic drug use; or
an interaction between pre-existing predispositions and residual
effects of drugs of abuse. Although our study revealed some disso-
ciable decision-making biases in amphetamine and heroin users,
our design does not allow us to determine whether they precede
onset of drug use or whether they are consequences of chronic
drug use. This crucial question should be investigated by future
carefully designed prospective studies.

Using the second best-fitting PVL-DecayRI model, we found
that the distinct decision-making style of heroin users charac-
terized by reduced sensitivity to loss is associated with elevated
trait impulsivity, as hypothesized. These findings are in line with
reports that personality variables are related to decision-making
performance on the IGT among heroin users on OST (Lemenager
et al., 2011). Our results indicate that similar associations are
observable among heroin users in protracted abstinence who are
not on OST. Speculatively, given the persistent nature of person-
ality traits such as impulsivity, which develop early and typically
prior to onset of substance dependence, the reduced loss aversion
in heroin users may have predated the development of addiction
and may be of etiological significance for addiction to opiates
in particular. In contrast, the decision-making bias displayed by
stimulant users (reward sensitivity) was not associated with per-
sonality traits but was instead related to duration of stimulant
use, which suggests that such biases may potentially reflect cumu-
lative residual effects of chronic stimulant use. It is important
to emphasize that we should exercise caution when interpreting
these associations, as they were not replicated with the best-fitting
(VPP) model.

A question arises as to what is the clinical significance of the
observed decision-making biases and deficits within the context
of our participants’ history of protracted abstinence, which is
the standard metric of success of most addiction treatment pro-
grams. Specifically, despite the observed decision-making deficits
and biases among the two drug user groups, the majority of
our participants have been remarkably successful in maintaining
abstinence for long periods of time and without the help of any
substitution therapy. In essence, the ability of our participants
to abstain for such protracted periods of time suggests that this
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group could be comprised of some of the least impulsive SDI,
expected to display more adaptive decision-making abilities than
SDI who are unable to remain abstinent for long. Future stud-
ies should determine the real-life significance of such decision-
making deficits and biases and the role they play in the protracted
abstinence stage. For example, we recently reported that some
decision-making biases may have functional significance for HIV
infected women with a history of illicit drug use, among whom
they may be related to risky sexual behaviors and reduced adher-
ence to HIV medication dosing schedules (Vassileva et al., 2013).
Similarly, we recently found that a composite neurocognitive
index of reward-based decision-making (which includes the IGT)
predicts recent (past 30-days) sexual HIV risk behaviors in heroin
and amphetamine users in protracted abstinence (Wilson et al.,
under review). Overall, our results suggest that decision-making
processes other than the ones we examined may be more relevant
for the successful and prolonged maintenance of a state of absti-
nence. Further, our findings may be specific to decision-making
under uncertainty and ambiguity, as measured by the IGT. It
is possible that SDI in protracted abstinence may display intact
functioning in other aspects of decision-making (e.g., decisions
under risk) that may have more direct relevance to the success-
ful maintenance of abstinence. On the other hand, the fact that
such decision-making deficits and biases were observed in par-
ticipants who have successfully maintained prolonged abstinence
raises the question of whether users who are unable to maintain
long-term abstinence are characterized by even more aberrant
decision-making profiles. It would be crucial for future studies
to determine how “successful” long-term abstainers such as our
participants compare to currently active SDI or to SDI who are
unable to abstain from drug use. Future studies should also deter-
mine whether similar substance-specific biases are observable in
opiate and stimulant users at other stages of the addiction cycle
and ideally employ longitudinal designs to determine whether
they are precursors or consequences of chronic substance use.

While clearly of theoretical significance, the extent to which
our findings have implications for prevention and interven-
tion remains to be determined. If replicated by future studies,
such decision-making deficits and biases may inform treatment
and recovery programs for opiate and stimulant dependent
individuals. Within this context, pre-treatment decision-making
assessments may represent a useful adjunct to help formulate per-
sonalized treatment plans (Baldacchino et al., 2012), which could
potentially include cognitive enhancement or training that have
shown some promising results (Nutt et al., 2007; Bickel et al.,
2011). Our results from the PVL-DecayRI model suggest that
interventions that target reduced loss aversion (punishment sen-
sitivity) may be more suitable for heroin users, whereas others
addressing increased reward sensitivity may hold promise with
amphetamine users, though we should exercise caution with the
latter, which failed to replicate with the best-fitting model.

There are a number of limitations that need to be considered
when evaluating the current findings. First, the fact that our par-
ticipants were predominantly male should be taken into account
when considering the generalizability of our findings to females.
Second, our findings could have been influenced by group dif-
ferences in age, IQ, and education, though the reduced loss

aversion in heroin users and the increased reward sensitivity in
the amphetamine group (with the PVL-DecayRI model) relative
to HC remained robust even after controlling for those factors.
Third, computational modeling parameter estimates, like many
conceptual or quantitative interpretive tools, are useful heuristics
in the evaluation of observed behavior patterns, not explanatory
mechanisms of the phenomena at hand. Interpretations should be
rendered accordingly, though the reduced loss aversion in heroin
users was robust across all models we tested.

In sum, by recruiting relatively pure amphetamine and heroin
users in protracted abstinence and by parcellating their decision-
making performance into distinct neurocognitive processes by
using computational modeling and Bayesian tools, we revealed
that heroin users displayed reduced loss aversion relative to
HC while being in protracted abstinence. Future studies uti-
lizing other experimental paradigms probing different aspects
of decision-making and computational models will be neces-
sary to examine which mechanisms may be at play in the
decision-making performance of heroin and amphetamine users
at different stages of the addiction cycle.
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