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Abstract

It is a hallmark of a good model to make accurate a priori predictions to new conditions (Busemeyer
& Wang, 2000). This study compared 8 decision learning models with respect to their generalizability.
Participants performed 2 tasks (the Iowa Gambling Task and the Soochow Gambling Task), and each
model made a priori predictions by estimating the parameters for each participant from 1 task and using
those same parameters to predict on the other task. Three methods were used to evaluate the models at
the individual level of analysis. The first method used a post hoc fit criterion, the second method used
a generalization criterion for short-term predictions, and the third method again used a generalization
criterion for long-term predictions. The results suggest that the models with the prospect utility function
can make generalizable predictions to new conditions, and different learning models are needed for
making short- versus long-term predictions on simple gambling tasks.
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1. Introduction

The study of human cognition has greatly profited from the development and application
of quantitative models, including both mathematical and computer simulation models. These
models have the potential to provide a coherent theoretical explanation of otherwise isolated
empirical effects, to offer precise predictions instead of vague verbalizations, and to yield
novel insights that challenge and replace old ideas once thought unassailable. An additional
advantage is the opportunity to use quantitative methods to compare and evaluate competing
models, which is critical for making scientific progress in cognition.

Correspondence should be sent to Woo-Young Ahn, Department of Psychological and Brain Sciences, Indiana
University, Bloomington, IN 47405. E-mail: ahnw@indiana.edu
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One of the main difficulties with quantitative comparisons among models is the prob-
lem of model complexity. A complex model may provide a more accurate post hoc fit
to a particular data set than a simpler model, although the simpler model may provide
more accurate a priori predictions for new conditions, tasks, or experiments. Shiffrin, Lee,
Wagenmakers, and Kim (in press) provided a general overview of various methods to deal with
this problem when performing model comparisons. The purpose of this article is to present
a detailed application of one particular method, the generalization criterion (Busemeyer &
Wang, 2000). Here we use this method to compare different models of decision and learning
(e.g., Yechiam & Busemeyer, 2005) on two experience-based, decision-making tasks, the
Iowa Gambling Task (IGT; Bechara, Damasio, Tranel, & Anderson, 1994) and the Soochow
Gambling Task (SGT; Chiu et al., 2008).

The generalization criterion for model comparison is based on the following simple
to use procedure: (a) A set of experimental conditions is divided into two subsets—a
calibration set and a test set, (b) all of the data obtained from the calibration set of
conditions are used to estimate the free parameters of the models, (c) the parameters
estimated from the calibration stage are then used to generate new a priori predictions
for the data obtained from the set of test conditions, and (d) the predictive accuracies
of the models under the test conditions are used to compare and evaluate the competing
models.

The generalization method differs from the cross-validation method in the following im-
portant way: Cross-validation randomly divides the entire set of data from all conditions into
two subsets of data—a calibration set of data points and a test set of data points. Thus, data
are sampled from all the conditions for the calibration stage. Generalization explicitly restricts
sampling of data points for the calibration stage to a subset of conditions, and so parameters
are not fit to any data from the test conditions. Cross-validation is useful for small sample sizes,
but it favors more complex models (whether true or not) with large sample sizes (Browne,
2000). In contrast, the generalization criterion can be used to select a simpler model that
generalizes better than a more complex model, even with very large sample sizes (Busemeyer
& Wang, 2000; Forster, 2000).

The generalization criterion has been used in several previous applications (e.g., Erev
& Barron, 2005; Erev & Haruvy, 2005; Rieskamp, Busemeyer, & Laine, 2003; Yechiam
& Busemeyer, 2005), but these studies were based on comparisons across different groups
of participants. The average of parameters obtained from a calibration group were used to
generate predictions for a generalization test group. This study used a more powerful within-
subjects design that enabled the application of the generalization criterion at an individual level
of analysis (Yechiam & Busemeyer, 2008). Each participant performed two multi-alternative
gambling tasks with order counterbalanced across participants. This within-subjects design
allowed us to post hoc fit the model parameters to one of the gambling tasks for an individual
(e.g., fit choices on the first task), and then use these parameter estimates to make a priori
predictions for this person on the other gambling task (e.g., predict choices on the second
task).

The remainder of this article is organized as follows. First, we describe the experimental
procedures and the basic findings. Next, we describe the model fits and the model comparisons
based on the generalization criterion. Finally, we describe implications of these findings for
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the comparison of learning theories and the utility of the generalization method for comparing
models more generally.

2. Experiments and basic findings

In this study, 2 four-alternative simulated gambling tasks were used: the IGT and the SGT.
In both of the gambling tasks, participants were presented with four decks (or alternatives)
and were asked to choose a card from any of the four decks. Every selection yields a gain or
loss of some amount, and the goal of both tasks is to make as much money as possible. Fig. 1
shows a screenshot of the IGT as an example.

The IGT and the SGT differ in how payoffs are presented and in their payoff distributions
(see Tables 1 and 2). In the IGT, gains and losses are presented to participants separately (e.g.,
a participant learns that she or he won $1.00 but lost $2.00), whereas in the SGT only the
net gains are presented to participants (e.g., a participant is told that she or he lost $1.00).
Tables 1 and 2 illustrate the payoff distributions of the IGT and the SGT, respectively. In
both tasks, Decks A and B are disadvantageous (or bad) with regard to their long-term gain
(expected value of 10 trials = −$2.5), and Decks C and D are advantageous (or good) with
positive long-term gain (expected value of 10 trials = $2.5). The location of these four decks
are randomized for each participant, and decks are unlabeled when presented to participants.
Choosing the advantageous decks maximizes expected value.

From a statistical perspective, the IGT and the SGT are so-called four-armed bandit prob-
lems (Berry & Fristedt, 1985). Bandit problems are a special case of the more general re-
inforcement learning problems in which an agent has to learn an environment by choosing
actions and experiencing the consequences of those actions (e.g., Estes, 1950; Sutton &
Barto, 1998). Optimal performance on such problems depends on a delicate trade-off between

Fig. 1. A sample display of the Iowa Gambling Task.
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Table 1
The payoff distribution of the Iowa Gambling Task for the first 10 trials

Deck A B C D

Expected value −2.50 −2.50 2.50 2.50
of 10 trials ($)

Gain on every trial ($) +1.00 +1.00 +0.50 +0.50
Loss on each trial

Trial 1
Trial 2
Trial 3 −1.50 −0.50
Trial 4
Trial 5 −3.00 −0.75
Trial 6
Trial 7 −2.00 −0.25
Trial 8
Trial 9 −2.50 −12.50 −0.50
Trial 10 −3.50 −0.50 −2.50

Note. These 10 trials were repeated 12 times (10 × 12 = 120 trials).
The order of these 10 trials was randomized every time.

“exploration” and “exploitation”; to discover the best option, the agent first has to try out or
explore the various opportunities. However, if the agent only has a limited number of trials
left, it is optimal to gradually stop exploring and instead exploit the option that has turned out
to produce the highest profit in the past.

Both tasks have interesting characteristics in the context of human judgment and decision
making. The IGT has been widely used to measure deficits in decision making exhibited by
clinical populations, such as ventromedial prefrontal cortex (vmPFC) patients (Bechara et al.,
1994, Bechara, Damasio, Tranel, & Damasio, 1997; Damasio, 1994) and drug abusers (for a
review, see Yechiam, Stout, Busemeyer, Rock, & Finn, 2005). Numerous studies have shown

Table 2
The payoff distribution of the Soochow Gambling Task for the first five trials

Deck A B C D

Expected value −2.50 −2.50 2.50 2.50
of 10 trials ($)

Net gain on each trial
Trial 1 1.00 0.50 −1.00 −0.50
Trial 2 1.00 0.50 −1.00 −0.50
Trial 3 1.00 0.50 −1.00 −0.50
Trial 4 1.00 0.50 −1.00 −0.50
Trial 5 −5.25 −3.25 5.25 3.25

Note. These five trials were repeated 24 times (5 × 24 = 120 trials). The order of these
five trials was randomized every time. Note that all decks of the Soochow Gambling Task
have the same expected values as those of the Iowa Gambling Task.
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that, whereas normal decision makers learn to choose more cards from advantageous decks,
many patient groups fail to do so.

Bechara et al. (1997) proposed the Somatic Marker Hypothesis and claimed that normal
decision makers are influenced by the longer term implications of their decisions, whereas
patients with vmPFC damage make decisions using only the more immediate results of their
actions. In decision-making terms, this claim is that normal decision makers choose more from
Decks C and D because they have positive expected values, and fewer from Decks A and B
because they have negative expected values. However, as Chiu et al. (2008) noted, selections
from Decks C and D also have a higher frequency of net gains in comparison to Decks A and
B (see Table 1); thus, expected values are confounded with gain frequency, and it is difficult to
know which of these factors is responsible for the choice patterns observed in the IGT. Chiu et
al. (in press) argued that perhaps choice behavior in the IGT is guided by the probability of net
gain payoffs, rather than the expected values. To test this possibility, they developed the SGT,
which instead links the advantageous decks (those with positive expected values) with low
net gain frequencies (1 out of 5) and disadvantageous decks with high net gain frequencies
(4 out of 5) while maintaining identical expected values to those in the IGT. Consistent with
the interpretation that gain frequency rather than expected payoffs drives choice behavior,
Chiu et al. (in press) found that healthy control participants preferred disadvantageous decks
in the SGT. From the point view of Erev and Barron (2005), participants’ choices deviate
from advantageous decks in the SGT because of the normal tendency of decision makers to
underweight rare events, to be loss averse, or both. Underweighting of rare events refers to
the tendency to underweight small probabilities of rare events and prefer the alternative that
provides the best outcome most of the time. Loss aversion refers to the tendency of participants
to prefer the alternative that decreases the probability of losses even if it is associated with a
lower expected gain.

Studies using the IGT indicate that normal healthy adults, on average, gradually learn
which decks are advantageous for maximizing monetary gain; this learning is indicated by
the observation that as trials proceed, they make an increasing proportion of choices from
the advantageous decks. In contrast, in the SGT, although advantageous decks have the same
average expected values as those in the IGT, normal decision makers (young healthy adults)
were unable to learn which decks are good decks and, therefore, lost money (Chiu et al.,
2008). In this study, the same data patterns were replicated using a within-subjects design,
and the data sets were used to further evaluate decision learning models. The very different
choice patterns in the two tasks allowed us to perform a critical generalization test because
good fits to the pattern for the calibration data set do not guarantee good predictions to the
pattern for the test data set (Busemeyer & Wang, 2000).

2.1. Methods

2.1.1. Participants
Thirty-six individuals (18 men, mean age = 22.0, range = 18–33) from Indiana University,

Bloomington campus area were recruited in the study. Most of them (31 out of 36) were
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college students. They were paid $7 per hour and received bonuses, the amount of which
depended on their performance on the tasks; the average bonus was $20.1

2.1.2. Procedures
Participants listened to instructions read aloud. Participants assigned to Group A first

participated in the IGT and then the SGT. Participants in Group B completed the tasks in
reverse order. The participants were randomly assigned to either group, and there were an
equal number of men and women in each group. Each task had 120 trials, and the number of
cards in each deck was unlimited for both tasks.

2.2. Results

The proportions of choices from advantageous decks on both tasks are plotted in Fig. 2.
For data analysis, we divided 120 trials into six blocks of 20 trials and examined proportions
of advantageous choices on each block. In the IGT, participants chose more cards from
advantageous decks (Decks C and D) as trials went on, a result that is consistent with past
research. An analysis of variance (ANOVA) revealed a main effect of block, F (5, 175) =
14.0, p < .0001, Greenhouse–Geisser corrected. Except for the first two blocks, proportions
of choices from advantageous decks were significantly greater than 0.5 (one-sample t test,
p < .001 for Blocks 3–6). In contrast, for the SGT, participants chose fewer cards from

Fig. 2. Proportion of choices from advantageous decks in the Iowa Gambling Task (IGT) and the Soochow
Gambling Task (SGT). Each block consists of 20 trials. Error bars indicate ±1 SEM.
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Fig. 3. The proportion of choices from each deck on the Iowa Gambling Task (IGT) and the Soochow Gambling
Task (SGT). Each block consists of 20 trials.

advantageous decks, although the decks had the same expected values as those in the IGT.
Except for Blocks 5 and 6, participants consistently chose more cards from disadvantageous
decks (one-sample t test, p < .001 for Blocks 1 and 2 and p < .03 for Blocks 3 and 4). A main
effect of block was not significant for the SGT, F (5, 175) = 1.5, p > .2, Greenhouse–Geisser
corrected. One possibility is that 120 trials could be too few, and participants in the SGT would
ultimately learn to prefer the advantageous decks if the number of trials increases. Chiu, Lin,
Huang, Lin, and Huang (2006) showed that even if the number of trials was increased to
200 trials, participants, on average, still consistently chose more cards from disadvantageous
decks with little learning in later blocks. When we used parameters estimated from 120 trials
of either the IGT or the SGT and ran simulations for 200 trials on the SGT, we had almost
exactly the same pattern.2

The proportion of choices (pooled across all trials) from each of the four decks are shown in
Fig. 3. Previous studies showed that, on average, decks with low-frequency negative payoffs
(e.g., Deck B in the IGT) are chosen more often than high-frequency decks (Deck A in the IGT;
Barren & Erev, 2003; Erev & Barron, 2005; Hertwig, Barren, Weber, & Erev, 2004; Yechiam
& Busemeyer, 2005), even if the decks’ expected payoffs are equal. Consistent with these past
results, in the IGT of this study, Deck B, a disadvantageous alternative with low-frequency
negative payoffs, was more frequently chosen than Deck A, a disadvantageous alternative
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Fig. 4. Comparison of mean proportions of choices from each deck by group and task. Error bars indicate ±1
SEM. IGT = Iowa Gambling Task; SGT = Soochow Gambling Task.

with high-frequency negative payoffs, t(35) = −3.35, p < .002. However, the proportions of
choices from Decks C and D were not significantly different, t(35) = 0.59, ns.3

The effects of task order are shown in Fig. 4, which indicates that the behavioral data patterns
were quite similar between two orders of tasks (groups). A repeated-measures ANOVA was
used to analyze the interaction between advantageous selections across blocks and task order;
this interaction was not significant: For the IGT, Decks × Order, F (3, 102) = 0.20, ns; for the
SGT, Decks × Order, F (3, 102) = 0.71, ns. Consequently, we analyzed the data from both
groups (orders) together in the following sections.

3. A comparison of decision learning models

The following decision learning models are based on three general assumptions. First, an
individual’s evaluation of the positive and negative payoffs can be represented by a unidimen-
sional utility function. Second, expectations about payoffs for each deck are learned on the
basis of the experienced utilities on each trial. Third, these expectancies determine the choice
probabilities for selecting each deck on each trial. In this study, we evaluated a factorial com-
bination of 2 Utility Functions × 2 Learning Rules × 2 Choice Probability Rules, producing
a total of eight models.
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3.1. Utility

3.1.1. Expectancy utility function
The evaluation of gains and losses on trial t is represented by a weighted utility function,

u(t):

u(t) = (1 − W ) · win(t) − W · loss(t). (1)

The terms win(t) and loss(t) are the amount of money won and lost on trial t, respectively.
W is the attention to loss parameter that denotes the weights participants place on losses
over gains; the value of the parameter varies between 0 and 1 (Busemeyer & Stout, 2002).
Presumably, W measures reward-seeking (low W value) or loss-aversive (high W value)
characteristics of an individual. This function implicitly assumes that decision makers process
gains and losses separately according to a piecewise linear utility function.

3.1.2. Prospect utility function

u(t) =
{

x(t)α if x(t) ≥ 0
−λ|x(t)|α if x(t) < 0.

(2)

The expectancy utility function assumes that the subjective utility is linearly proportional
to the actual payoff amount. This linear approximation has been considered sufficient for
small payoffs; however, this utility function cannot account for the gain–loss frequency effect.
For example, getting −$1 four times seems worse than getting −$4 once for most people
although the sum of losses is equivalent (Erev & Barron, 2005). However, the expectancy
utility function predicts that those two events have the same overall utility. To account for the
frequency effect, it may be necessary to use a nonlinear function, such as that used in prospect
theory (Tversky & Kahneman, 1992).

Here, x(t) is the net gain (= win(t) − |loss(t)|) on trial t, α is a parameter that governs the
shape of the utility function, and λ is a loss-aversion parameter. Unlike the expectancy utility
function, this function assumes that decision makers process only the net gain, and that the
net gain is nonlinearly proportional to the actual net gain. As α goes to zero, the shape of this
function becomes more like a step function.

3.2. Updating of expectancies

Two general classes of models were employed: a delta learning rule and a decay-
reinforcement rule.

3.2.1. Delta learning rule
This rule, also known as a Rescorla–Wagner rule (Rescorla & Wagner, 1972), has been

employed in connectionist theories of learning (Gluck & Bower, 1988; Rumelhart et al., 1987;
Sutton & Barto, 1998), IGT studies (e.g., Busemeyer & Stout, 2002; Yechiam & Busemeyer,
2005), and binary choice studies (Yechiam & Busemeyer, 2008).

Ej (t) = Ej (t − 1) + A · δj (t) · [u(t) − Ej (t − 1)] (3)
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Here, Ej (t) refers to the expectancy for deck j on trial t. The A is the updating parameter
(0 < A < 1), which dictates how much the expectancy of a selected deck j on trial t is modified
by the prediction error, [u(t) − Ej (t − 1)]. The expectancies of unselected decks remain as
they were in the previous trial. The variable δj (t) is a dummy variable, which is 1 if deck j is
chosen and 0 otherwise.

3.2.2. Decay-reinforcement rule
The equation of the decay-reinforcement rule (Erev & Roth, 1998) for the expectancy about

deck j on trial t is

Ej (t) = A · Ej (t − 1) + δj (t) · u(t). (4)

This rule assumes that the past expectancy is always discounted, and a selected deck on
the current trial is updated by u(t). A is a recency parameter (0 < A < 1) that dictates how
much the past expectancy is discounted. This rule has more flexibility than the delta rule
because it permits the expectancies of all alternatives to change on each trial. Previous studies
(Yechiam & Busemeyer, 2005; 2008) found that a decay-reinforcement model had a better
post hoc fit than a delta learning model. However, high model flexibility may over-fit the data
and lead to poor generalizability. Therefore, both rules were tested again in this study using
the generalization criterion methods.

3.3. Choice rule

Upon first consideration, it may seem rational to always prefer the deck with the highest
expected valence. This “greedy” strategy, however, leaves very little room for exploration, and
the danger is that the decision maker quickly gets stuck choosing an inferior option. What is
needed is some procedure to ensure that participants initially explore the decks, and only after
a large number of trials decide to always prefer the deck with the highest expected valence.
One of the standard reinforcement learning methods to achieve this is what is called a ratio-
of-strength choice rule, which is also known as softmax selection or Boltzmann exploration
(Kaelbling, Littman, & Moore, 1996; Luce, 1959). This rule assumes that decision makers use
a probabilistic matching rule in which the probability of choosing an alternative is proportional
to the relative strength of the alternative. Research suggests that this rule has greater accuracy
for the IGT than the maximization rule with guessing (Yechiam & Busemeyer, 2005). Recall
that Ej (t) is the expectancy after t trials of feedback. Define D(t + 1) as the deck chosen on
the next trial, t + 1. Then, according to the model, the probability that deck j is chosen on the
next trial (Pr[D(t + 1) = j ]) is determined by the following ratio rule:

Pr[D(t + 1) = j ] = eθ (t)·Ej (t)

∑4
k=1 eθ (t)·Ek(t)

. (5)

The parameter θ (t) determines the sensitivity of the choice probabilities to the expectancies.
1/θ (t) can be thought of as the “temperature” on trial t. When θ (t) approaches zero (the
temperature is very high), choices become completely random, allowing for a lot of exploration
and equivalent to random guessing. For very large values of θ (t) (at very low temperature),
choices become deterministic and resemble the maximization rule in which a deck with the
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highest expectancy is always selected. We examined both trial-dependent and trial-independent
ratio choice rules.

3.3.1. Trial-dependent choice rule
Sensitivity, θ (t), may increase or decrease over trials. As participants accumulate experience

as trial numbers increase, they may have more confidence in their expectancies, and θ (t)
may increase accordingly. On the other hand, θ (t) may decrease as training progresses,
reflecting fatigue or boredom of participants. This dynamic is formalized by the following
power function:

θ (t) = (t/10)c. (6)

Here, c is a free parameter called consistency. Positive values of c indicate increasing
sensitivity (more deterministic) over time, and negative values of c indicate decreasing sen-
sitivity (more random guessing). Note that before 10 trials, the sensitivity parameter favors
exploration; but after 10 trials exploitation becomes more dominant.

3.3.2. Trial-independent choice rule
Previous studies show that the trial-dependent choice rule explains choice behavior on

the IGT and binary choice tasks quite well. However, it is unclear whether such a rule can
successfully explain choices in other multi-alternative gambling tasks (e.g., SGT). Therefore,
we also employed a trial-independent choice rule (Yechiam & Ert, 2007):

θ (t) = 3c − 1. (7)

If c gets close to zero (as θ → 0), the decision makers make random selections, and a large
value of c captures a deterministic choice rule. The consistency parameter c ranges from 0 to
5 so that the sensitivity ranges from 0 (random) to 242 (almost deterministic).

4. Model evaluation

Three different model evaluation methods were used to compare the 8 models. One method
was to compare the post hoc fits of each model to each task, and the other two methods were
based on the generalization criterion. The details of each model comparison method and the
results of each method are described in the following.

4.1. Model fit using the one-step-ahead prediction method

We used the one-step-ahead prediction method to compute model fits for each person and
task. This method examines the accuracy of a model in predicting an individual’s choice on
the next trial based on an individual’s actual sequence of choices and consequent payoffs
up to and including the current trial. Define Yi(t) as the sequence of choices made by an
individual i up to and including trial t , and define Xi(t) as a vector with a corresponding
sequence of payoffs produced by these choices. The model generates the probability that the
individual will select an alternative Dj (j is from 1 to 4) on the next trial t + 1, which is
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Pr[Dj (t + 1)|Xi(t), Yi(t)]. The accuracy of model predictions is measured by log likelihood
(LL) criterion for each individual:

LLModel, i = ln Pr(Data for person i |Model)

=
n−1∑

t=1

4∑

j=1

ln (Pr[Dj (t + 1) |Xi(t), Yi(t)]) · δj (t + 1). (8)

Here, n is the number of trials (= 120) and δj (t + 1) is a dummy variable that is 1 if
deck j is chosen on trial t + 1 and 0 otherwise. Each model has three (W, A, and c) or
four (α, λ, A, and c) free parameters, and the parameter values were estimated using the
maximum likelihood estimation. A computer search algorithm was used to search for the set
of parameters that optimized the LL, which was based on a combination of grid-search and
simplex search methods (Nelder & Mead, 1965): The algorithm used 50 different starting
positions on a grid and found the parameters that maximized the LL for each starting position.
Then we selected the solutions of a starting point that produced the global maximum across
all grid points.4

The grid for the parameter search used the following constraints: W, α, and A were
limited to values between 0 and 1; λ was limited to values between 0 and 10; trial-dependent
consistency was limited to values between −5 and 5; and trial-independent consistency was
limited to values between 0 and 5.

To calculate the measure of fit, each model was compared with a baseline statistical model
by computing differences in LL as follows:

G2 = 2 · [LLmodel − LLbaseline]. (9)

The Bernoulli baseline model selects an alternative using a statistical Bernoulli process:
Probabilities of each alternative are assumed to be constant for all trials (equal to the indi-
vidual’s overall proportion of each deck) so the choices are statistically independent across
trials. Therefore, a cognitive model can outperform the Bernoulli baseline model only when
it explains trial-to-trial dependence or learning effects. Positive values of G2 indicate that the
model explains the data better than the Bernoulli baseline model.

A particular model may have a better fit simply because it has more parameters. To consider
model complexity and adjust for differences in the number of parameters, we used the Bayesian
Information Criterion (BIC; Schwartz, 1978):

BIC = G2 − %k · ln (N ). (10)

N is the number of observations (or trials) and %k is the difference in the number of
parameters between a cognitive model and the baseline model. Here, a positive BIC would
indicate that the model is better than the baseline model even after model complexity is
considered. Equation 10 shows that the G2 value of models with four parameters is reduced
by %k · ln (N ) = 1 · ln (120) ≈ 4.79 compared to the G2 of models with three parameters.

Tables 3 and 4 present statistics that summarize the distribution of parameters obtained
from the 36 participants for each of the eight models (Table 3 for the IGT and Table 4 for
the SGT). The distributions are summarized in terms of the means and standard deviations of
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Table 3
The means and standard deviations (in parentheses) of Bayesian Information Criterion (BIC) scores and estimated
parameters of the models in the Iowa Gambling Task

Utility Updating Choice BIC A W or λ c α

EU DEL TDC 7.45 (32.2) 0.14 (0.2) 0.42 (0.3) 1.49 (1.6) na
TIC 7.49 (25.4) 0.13 (0.3) 0.40 (0.2) 3.16 (1.7)

DRI TDC 18.25 (35.4) 0.67 (0.4) 0.41 (0.3) 0.19 (1.4)
TIC 17.20 (33.2) 0.68 (0.4) 0.36 (0.3) 0.81 (0.8)

PU DEL TDC 12.98 (30.8) 0.17 (0.3) 2.75 (3.8) 1.12 (1.3) 0.53 (0.4)
TIC 11.17 (24.7) 0.17 (0.3) 2.56 (3.4) 2.81 (1.8) 0.55 (0.4)

DRI TDC 7.12 (37.0) 0.67 (0.3) 1.47 (2.4) −0.24 (0.5) 0.47 (0.4)
TIC 15.48 (31.3) 0.75 (0.3) 2.19 (3.4) 0.41 (0.4) 0.32 (0.4)

Note. EU = expectancy utility; PU = prospect utility; DEL = delta learning rule; DRI = decay-reinforcement
learning rule; TDC = trial-dependent consistency; TIC = trial-independent consistency.

the parameters. In the IGT, every model had positive average BICs relative to the Bernoulli
baseline model (every model was better than the baseline model). In the SGT, all models
with the expectancy utility function had negative BICs except one, whereas models with
the prospect utility function still all had positive BICs. Regarding learning rules, overall the
decay-reinforcement rule had higher accuracy (higher BIC scores), which is consistent with
previous research (Yechiam & Busemeyer, 2005; 2008).

Next, we examined the model fits using a random baseline model. The random baseline
model assumes that each choice option is equally likely across all trials. This baseline model
is important because it can be applied to the generalization test phase. The Bernoulli baseline
model cannot be used for generalization tests because it requires estimation of new parameters.
Using the parameter estimates of each individual from each task, models made one-step-ahead
predictions of the same task. A detailed procedure is described in Appendix A. The shaded
or gray regions of Table 5 presents statistics that summarize the distribution of G2 statistics

Table 4
The means and standard deviations (in parentheses) of Bayesian Information Criterion (BIC) scores and
estimated parameters of the models in the Soochow Gambling Task

Utility Updating Choice BIC A W or λ c α

EU DEL TDC −6.78 (20.6) 0.31 (0.3) 0.31 (0.4) −0.31 (1.6) na
TIC −6.61 (18.8) 0.22 (0.3) 0.26 (0.4) 2.05 (1.8)

DRI TDC −0.62 (32.2) 0.66 (0.3) 0.39 (0.4) −0.81 (2.0)
TIC 1.57 (27.3) 0.75 (0.3) 0.24 (0.4) 0.51 (0.7)

PU DEL TDC 1.23 (20.3) 0.24 (0.3) 2.72 (3.6) −0.09 (1.1) 0.45 (0.4)
TIC 2.30 (19.3) 0.24 (0.3) 2.99 (4.2) 1.97 (1.8) 0.24 (0.3)

DRI TDC 4.28 (32.1) 0.62 (0.4) 1.47 (2.9) −0.39 (0.5) 0.30 (0.3)
TIC 10.73 (28.7) 0.71 (0.3) 1.96 (3.4) 0.37 (0.3) 0.36 (0.4)

Note. EU = expectancy utility; PU = prospect utility; DEL = delta learning rule; DRI = decay-
reinforcement learning rule; TDC = trial-dependent consistency; TIC = trial-independent consistency.
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Table 5
The distributions of G2 scores

Model Estimated Task: IGT Estimated Task: SGT

Target task Utility Updating Choice L10% M Mdn U90% % L10% M Mdn U90% %

IGT EU DEL TDC 4.2 68.5 51.7 155.7 94.4 −51.2 1.6 0.2 53.5 50.0
TIC 7.4 71.1 43.1 164.1 100.0 −40.2 12.6 6.0 64.2 58.3

DRI TDC 14.2 80.8 73.8 154.6 100.0 −35.1 0.0 7.5 80.3 63.9
TIC 16.6 80.3 70.6 155.4 100.0 −4.9 21.8 20.3 119.4 86.1

PU DEL TDC 10.0 80.3 66.2 154.7 100.0 −12.5 19.6 11.2 71.2 66.7
TIC 9.2 78.5 60.4 177.6 100.0 −9.9 23.1 20.7 81.8 77.8

DRI TDC −3.3 75.0 66.3 158.5 88.9 −19.5 33.3 20.0 108.1 80.6
TIC 17.1 83.4 80.5 154.0 100.0 −23.1 36.7 31.2 118.7 77.8

SGT EU DEL TDC −509.9 −131.0 −29.6 38.2 25.0 2.9 37.4 22.3 115.8 100.0
TIC −277.5 −78.3 −29.2 52.7 30.6 2.7 38.6 23.7 114.2 97.2

DRI TDC −348.4 −86.0 −41.6 68.6 38.9 1.6 44.4 28.6 112.8 94.4
TIC −222.2 −41.6 −17.3 68.8 41.7 3.3 46.7 33.6 110.7 97.2

PU DEL TDC −441.5 −105.7 −20.0 87.6 41.7 8.1 50.8 31.7 129.4 100.0
TIC −273.4 −64.3 −15.6 91.5 44.4 7.2 51.7 29.0 136.2 100.0

DRI TDC −344.6 −62.7 −6.8 81.4 47.2 2.1 54.2 37.1 129.9 94.4
TIC −230.6 −37.1 −4.2 91.2 41.7 14.4 60.6 39.8 130.1 100.0

Note. Table shows lower 10% bounds, means, medians, upper 10% bounds, and percentage of individuals for which the generalization prediction
of a decision learning model is better than that of a random model. Shaded cells denote tests that do not involve generalization. EU = expectancy
utility; PU = prospect utility; DEL = delta learning rule; DRI = decay-reinforcement learning rule; TDC = trial-dependent consistency; TIC =
trial-independent consistency; IGT = Iowa Gambling Task; SGT = Soochow Gambling Task; M = Mean; Mdn = Median.
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obtained from the 36 participants for each of the eight models. G2 are used here rather than
BICs because we later compare these results with those obtained from a generalization test,
and the BIC is not relevant for these tests. In particular, the shaded region in the upper left-hand
corner under the column labeled “Estimated Task: IGT” and the row labeled “Target task:
IGT” presents the G2 results for the fits to the IGT; the shaded region in the lower right-hand
corner under the column labeled “Estimated Task: SGT” and the row labeled “Target task:
SGT” presents the G2 results for the fits to the SGT. The distributions are summarized in terms
of the lower 10th percentile, mean, median, and 90th percentile of the G2 scores. A positive
G2 value for a model would imply that the model can make better one-step-ahead predictions
than a random model, on average. Also, a percentage greater than 50% would imply that the
model is a better fit than a random model for more than 50% of participants, which is a chance
level.

Generally, the G2 results in the shaded regions of Table 5 show that the prospect utility
function performed better than the expectancy utility function. Given that a prospect utility
function is used, the decay-reinforcement learning model performed slightly better than the
delta learning model. Finally, the prospect utility function–decay reinforcement learning–trial
independent choice model performed best.

4.2. Generalization at the individual level

Using the generalization criterion method, we tested generalizability of the models across
tasks at the individual level (Yechiam & Busemeyer, 2008). Parameter values estimated from
one task (either the IGT or the SGT) were used to make one-step-ahead predictions again
using the procedure in Appendix A, but this time predictions were made for the other task.
G2 and the percentage of individuals for which G2 > 0 were used as fit indexes. Again, the
baseline model was a random model (equal chance of selecting each deck).

The unshaded, or white regions, in Table 5 show the results of the one-step-ahead general-
ization predictions. In particular, the region in the upper right-hand corner shows the results
when the parameters estimated from the SGT were used to predict choices in the IGT; the
region in the lower left corner shows the results when the parameters from the IGT were
used to predict choices in the SGT. Generally, the same results were found with this gen-
eralization test as found before with the model fitting method. The prospect utility function
performed better than the expectancy utility function; given that a prospect utility function is
used, the decay-reinforcement learning model performed better than the delta learning model;
finally, the prospect utility function decay-reinforcement learning trial-independent choice
model performed best, although the trial-dependent choice model had a higher percentage of
positive G2.

The results also show that the generalization from the SGT to the IGT was more successful
than generalization from the IGT to the SGT. When the SGT was used to predict the IGT, all
models had positive average G2 values and were above or equal to chance level percentage
(50%). Specifically, models with the prospect utility function had close to 80% positive
G2 values, on average. In contrast, when the IGT was used to predict the SGT, all models
had negative average G2 scores and less than 50% accuracy compared to a random model.
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This is consistent with the result of Yechiam and Busemeyer (2008), in which a task (high-
variance task) with the poorest BIC fit and the poorest learning nevertheless led to the best
generalizability of one-step-ahead predictions. We discuss this issue further in the General
Discussion.

4.3. Simulation method

The one-step-ahead prediction method uses the observed past history of choices for an
individual on a task to predict the next choice. An alternative method, called the simulation
method (Yechiam & Busemeyer, 2005), uses the parameters estimated from one task to make
a priori predictions for the entire sequence of 120 choices in the second task (without using
any information about observed choices on the second task). Strictly, it is not an individual
level analysis. However, unlike previous studies (e.g., Yechiam & Busemeyer, 2005), we ran
simulations for each participant separately and averaged all simulation results afterward.

For each participant, the previously described parameter estimates of one task (estimated
using the one-step-ahead prediction method) were used to generate 100 simulations for the
entire sequence of choices for both tasks, producing 3,600 simulations in total (100 × 36
participants = 3,600). The 100 simulations generated from each participant were averaged
across all participants to produce the predicted probability of choice on each trial for each
task, and these predicted probabilities were then compared to the observed choice probabilities
using mean square deviation (MSD) scores5 (a detailed procedure for the simulation method
is in the Appendix B):

MSD = 1
4 · n

n∑

t=1

4∑

j=1

(D̄exp,j (t) − D̄sim,j (t))2. (11)

Here, n is the total number of trials (= 120), D̄exp,j (t) is the mean percentage of choices
from alternative j on trial t across all participants’ experimental data, and D̄sim,j (t) is the
mean percentage of choices from alternative j on trial t across all participants’ simulation
data. When calculating MSDs, we used percentage scores (e.g., 35%) instead of proportions
(e.g., 0.35). The MSD is a measure of deviation of simulation data from the observed data,
so the lower the MSD is, the higher its accuracy. Before computing the MSD scores, we
smoothed experimental data by running a moving window of seven trials (each datum point
is the average of nearby 7 data).

Table 6 summarizes the results of simulation data. The shaded regions (upper left corner
and lower right corner) show the results when the parameters from a task are used to generate
the simulated choices for the same task (post hoc fits). The unshaded or white regions (upper
right corner or lower left corner) show the results when the parameters from one task are used
to generate simulated choices for a different task (a priori predictions).

The results in Table 6 clearly show that, as found before, models with the prospect utility
function outperformed models with the expectancy utility function. However, unlike before,
generally models with the delta learning rule performed better than models with the decay-
reinforcement learning rule. With regard to the consistency models, neither model seemed
to outperform the other. Regarding performance of learning rules, Yechiam and Busemeyer
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Table 6
MSDs of each model between behavioral data and model predictions

Model
Estimated Task: IGT Estimated Task: SGT

Target task Utility Updating Choice MSD MSD

IGT EU DEL TDC 80.71 153.40
TIC 83.80 219.09

DRI TDC 120.19 204.61
TIC 166.17 291.43

PU DEL TDC 24.58 90.79
TIC 24.12 84.43

DRI TDC 91.60 161.67
TIC 87.85 151.61

SGT EU DEL TDC 222.33 77.87
TIC 272.83 109.47

DRI TDC 115.72 65.09
TIC 151.77 146.38

PU DEL TDC 25.95 23.61
TIC 23.12 21.63

DRI TDC 22.27 25.37
TIC 35.08 26.27

Note. Shaded cells denote tests that do not involve generalization. EU = expectancy utility; PU =
prospect utility; DEL = delta learning rule; DRI = decay-reinforcement learning rule; TDC = trial-
dependent consistency; TIC = trial-independent consistency; MSD = mean square deviation; IGT =
Iowa Gambling Task; SGT = Soochow Gambling Task.

(2005, partial information condition) found similar results in a study that only used the IGT:
The decay-reinforcement learning model was clearly superior with one-step-ahead predictions;
but this superiority largely disappeared when the entire sequence of choices was simulated
without using past choices.

Fig. 5 visualizes the simulation results of the prospect utility–delta learning–trial indepen-
dent choice model, one of the best among all eight models. As can be seen in this figure, this
model’s performance was excellent in post hoc fits (IGT→IGT and SGT→SGT). The MSD
of this model was below 25, meaning that the average discrepancy between the simulation
data and the observed data was less than 5% on each trial. It not only predicted the preference
of Deck B over Deck A on the IGT, but also predicted more choices from disadvantageous
decks on the SGT, whereas the models with the expectancy utility function could explain
neither. For conciseness, only the simulation results for the prospect utility are shown.

In generalization tests, this model with the delta learning rule showed acceptable perfor-
mance for IGT→SGT, which is consistent with the results of Table 6. Meanwhile, Fig. 6
shows that simulation results of the model with the decay-reinforcement learning rule (with
the prospect utility and trial-independent choice model) are worse than those of the previous
model. Even in the IGT, this model predicted too many choices from Deck B and too few
choices from Deck C. In a generalization test from IGT→SGT, its predictions are qualitatively
correct but not as good as the predictions of the delta learning rule.
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Fig. 5. Simulation results of the prospect utility function delta learning rule trial-independent model: calibration
set → test set. Error bars indicate ±1 SEM. IGT = Iowa Gambling Task; SGT = Soochow Gambling Task.

4.4. Resolving the difference between model comparison methods

Why did the delta learning rule perform better than the decay-reinforcement learning rule
in simulation results? The clearest difference between the one-step-ahead prediction method
and the simulation of all choices is that the former makes use of the actual past choices to
predict the next choice, whereas the latter does not use any information about past choices to
make predictions. The decay-reinforcement learning model can track past behavior (because
it decays unchosen options toward zero), which may give it an advantage when it needs to use
past behavior to predict the next choice. This advantage is removed with the simulation method;
and, once removed, the delta learning rule outperforms the decay-reinforcement learning rule.
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Fig. 6. Simulation results of the prospect utility function decay-reinforcement learning rule trial-independent
model: calibration set → test set. Error bars indicate ±1 SEM. IGT = Iowa Gambling Task; SGT = Soochow
Gambling Task.

Yechiam and Ert (2007) evaluated the degree of reliance of model predictions on past choices
and past payoffs. They found that the delta learning rule relied more on past payoffs than the
decay-reinforcement learning rule, and it gave an advantage to the delta learning rule when
making predictions to new conditions. In making predictions about new conditions, which
presumably have new payoff distributions, a model needs to base its predictions on payoffs
rather than choices.

This also seems to explain why the simulation results from the IGT to the SGT were better
than from the SGT to the IGT. Note that one-step-ahead predictions from the SGT to the
IGT were better than the IGT to the SGT. These findings may appear to be contradictory or
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inconsistent but, in fact, they are not. The IGT has more payoff variability (or entropy) than the
SGT (Tables 1 and 2) implying that parameters estimated from the IGT, compared to the SGT,
were based more on past payoffs rather than past choices. Therefore, simulation predictions
using parameters from the IGT would be more generalizable than using parameters from the
SGT to new conditions. As mentioned earlier, the one-step-ahead prediction method relies
heavily on past choices. Therefore, when making one-step-ahead predictions, predictions that
are based on past choices would have more advantages. We suspect that is why the one-step-
ahead predictions from the SGT to the IGT are better than the other way around. As shown
in Fig. 3, choices on the SGT were more distributed across decks than the IGT and perhaps
models could get better parameter estimates from the SGT data for one-step-ahead predictions.

5. General discussion

The purpose of this article was to compare several models of learning in two decision-
making tasks using the generalization criterion methods. A new experiment was reported
that investigated learning processes in two different types of gambling tasks—the IGT and the
SGT. The two tasks produced dramatically different learning curves: The former showed much
greater learning and a different direction of learning compared to the latter. These empirical
results provided the data sets for evaluating the decision learning models.

Eight models were compared by examining two utility assumptions (expectancy utility vs.
prospect utility) crossed with two learning assumptions (delta learning vs. decay-reinforcement
learning) crossed with two choice rules (trial-dependent vs. trial-independent choice consis-
tency). This design for model comparison allows testing of each property of the model
independently of other model properties (Yechiam & Busemeyer, 2005).

We used three different methods to evaluate the models at the individual level of analysis.
The first method used a post hoc fit criterion, which evaluated the accuracy of one-step-ahead
predictions after fitting the parameters to both gambling tasks. The second method used a
generalization criterion, which evaluated the accuracy of one-step-ahead predictions for one
of the gambling tasks using parameters estimated from the other gambling task. The third
method also used a generalization criterion, but the evaluation was based on the accuracy
for simulating all of the choices in a second task using parameters estimated from a first
(calibration) task.

The results obtained by using one-step-ahead predictions turned out to be very similar for
model fits and generalization tests. Both methods found that (a) the prospect utility function
performed much better than the expectancy utility function; (b) given the prospect utility
function, the decay-reinforcement learning model moderately performed better than the delta
learning model; and (c) given the prospect utility function and the decays reinforcement learn-
ing rule, the trial-independent choice rule performed slightly better than the trial-dependent
choice rule. These results were generally consistent across both the IGT and the SGT. Model
fit indexes, as well as generalization test indexes, were better for the IGT than the SGT.
Apparently, it was more difficult to predict behavior in the SGT using the one-step-ahead
prediction method. This may reflect the greater difficulty in learning that occurs in the SGT
or better parameter estimates for the one-step-ahead predictions from the SGT to the IGT as
mentioned earlier.
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The third method (based on simulating all of the choices) produced different results than
the one-step-ahead predictions. The prospect utility function still performed better than the
expectancy utility function, and there was little or no difference between trial-independent
and trial-dependent choice rules. However, in this case the delta learning rule outperformed
the decay-reinforcement learning rule. This is believed to be due to models’ different reliance
on past payoffs and past choices. The delta learning rule depends more on past payoffs than
the decay-reinforcement learning rule (Yechiam & Ert, 2007). Therefore, its performance is
worse in making one-step-ahead predictions, which uses observed choices but it has better
generalizability and better performance on the simulation results.

Then, a critical question is, “What is the best model, or which model should be used in
making predictions?” Some readers might get an impression that the choice of a learning model
depends on which measure of fit is used. Of course, this is not true and it is not the conclusion
of this article. We argue that the choice of “the best” model often depends on the types (or
goals) of predictions. As Erev and Haruvy (2005) pointed out, the best model in predicting
tomorrow’s weather can be different from the best model in predicting the next year’s weather
(e.g., Vintzileos, Delecluse, & Sadourny, 1999), so one’s best model for weather forecasting
depends on his or her need. All of the models considered here are quite simple; and, for this
reason, they are all imperfect. Nevertheless, they may be useful for prediction under limited
circumstances. In this study, regarding learning rules, the decay-reinforcement learning rule
was better in making prediction for the very next trial (short-term prediction), whereas the delta
learning rule was better in making predictions for the entire sequence of choices (long-term
prediction). As an example, for the purpose of “adaptive testing” (Erev & Haruvy, 2005) or
on-the-fly manipulation on the task, the decay-reinforcement learning rule would be better. In
such a situation, a model needs to predict participants’ next responses as accurately as possible
based on past choices to change or manipulate payoffs of decks, and the decay-reinforcement
learning model is a better choice according to the results of this study. On the other hand, to
predict a participant’s or a group’s performance on a new gambling task, the delta learning rule
should be used. For instance, one may want to develop a better gambling task than the IGT to
measure decision-making deficits of substance abusers. Then, a new task or payoff distributions
can be tested using parameters of substance abusers estimated from the IGT, as long as the
model’s performance in new conditions proved to be adequate. Previous researchers (e.g., Erev
& Haruvy, 2005; Yechiam & Busemeyer, 2005) found that different models emerge as best
depending on the chosen objective (short term vs. long term). Our results are consistent with
Yechiam and Busemeyer (2005), and it is a very consistent finding across other components
of models and target tasks. Our model design (the 2 Utility Functions × 2 Learning Rules
× 2 Choice Rules of 8 models) allowed us to rigorously test the short-term and long-term
predictability of each learning model. As Tables 5 and 6 show, the previous finding was
generally true whether the utility function was either the expectancy utility or the prospect
utility, whether the choice rule was trial-dependent or trial-independent, or whether the target
task was the IGT or the SGT.

Regarding utility functions, the prospect utility function outperformed the expectancy utility
in almost every measure. Numerous previous studies on prospect theory exist but they were
mostly on “decisions from description” studies. This study suggests that its utility function
accounts for at least some data in experience-based tasks as well. The success of the prospect
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utility function lies in its nonlinear shape (diminishing sensitivity). Because large payoffs
are discounted more than small payoffs, it can account for the gain–loss frequency effect.
This is important in explaining decisions made on the IGT because most of learning toward
advantageous decks of healthy participants comes from fewer choices from Deck B, which has
the net loss frequency of 1 out of 10. At the same time, drug abusers and many other clinical
populations fail to avoid choosing from Deck B, which is the main reason why they show poor
performance on the IGT. Recent studies by Desmeules, Bechara, and Dube (2007) and Erev,
Ert, and Yechiam (in press) also found that diminishing sensitivity plays an important role in
decision making.

In this article, the generalization criterion method was applied to relatively well-behaved
mathematical models with just three or four free parameters. The same approach can be
applied to more complex models such as neural network models or computational models
based on a cognitive architecture. The generalization criterion automatically considers model
complexity in making a priori predictions. Therefore, if a model is complex enough but not
general enough, its fit to a calibration set will be good but its a priori predictions to new
conditions will not be. In addition, the generalization method is not restricted to make a
priori predictions for behavior only. For example, in Anderson and Qin (2008), an ACT–R
(Anderson et al., 2004) model was fit to behavioral data, and it generated a priori predictions
for the functional magnetic resonance imaging signal in several brain regions to test the
model’s generalizability. Brown & Braver (2005) compared two computational models (error-
likelihood model and conflict model) of anterior cingulate cortex, and Hampton, Bossaerts, &
O’Doherty (2006) compared a reinforcement learning model and a Markov model with higher
order structure using similar frameworks. The underlying idea of all those studies is the same:
estimating parameters from one measure and making a priori predictions to another measure
to test a model’s generalizability.

In closing, three general lessons were learned from this study. First, using the one-step-
ahead prediction method, comparisons of model fits based on the BIC index very closely
matched the comparisons of model accuracy based on the generalization criterion. Second,
regarding basic learning processes in simple gambling tasks, the learning model selected as
“the best model” depended on the objectives that we wish to achieve. If we wish to achieve
short-term prediction about what happens next given observations about the past history, then
the decay-reinforcement learning model is best; but if we wish to achieve long-term prediction
without knowing anything about the past history of choices, then the delta learning rule is
best. Third, the prospect utility function had better accuracy and generalizability than the
expectancy utility function. In some of our previous work aimed at disentangling processes
underlying gambling tasks, we used the Expectancy Valence Learning model (Busemeyer &
Stout, 2002), which has the expectancy utility function. However, the results of the present
study suggest that we should consider switching to the prospect utility function in the future.
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Notes

1. Regarding bonuses, participants received one half of whatever money they earned at the
end of each task (e.g., if a participant ended up with $20 in the Iowa Gambling Task, she
or he received $10 for the task). They started each task with $20.00 and were informed
about the bonus rate. If they ended up with a negative amount of play money on a task,
their bonus for the task was $0.

2. One may wonder why in later sections learning models are applied to the Soochow
Gambling Task (SGT) in which participants did not show “learning” if learning is
defined as to choose more cards from advantageous decks as trials proceed. Note that
models compared in this study are not just learning models but decision learning models.
Even if the proportion of choices from advantageous decks is below 50% on average, it
does not necessarily imply that there is no trial-to-trial dependence or participants made
choices randomly. In fact, participants in the SGT selected significantly more cards from
disadvantageous decks, on average, save Blocks 5 and 6, and it may indicate that they
did not make random choices. A good decision learning model should be able to capture
such a pattern as well. This is especially important to successfully model a clinical
population that usually fails to choose more cards from advantageous decks even in the
Iowa Gambling Task.

3. In the Soochow Gambling Task, disadvantageous decks (Decks A and B) have the
equal probability of net negative payoffs. As expected, neither deck was significantly
preferred over the other, t(35) = 1.36, p = .18. This was also true for Decks C and D,
t(35) = −1.87, p = .07.

4. The sum of one-step-ahead prediction errors can be used for multiple purposes. In this
work, we use it for parameter estimation; that is, we adjust the model parameters until
we find the point estimates that minimize the sum of one-step-ahead prediction errors.
It is important to realize that this sum of prediction errors is always fully available to the
minimization algorithm. This means that the best parameter values may be those that
yield relatively large prediction errors early in the series of observations, but compensate
for their initial poor predictions by producing outstanding predictions at a later stage.
In other work, the sum of one-step-ahead prediction errors has been used for model
selection (e.g., Dawid, 1984; Shiffrin, Lee, Wagenmakers, & Kim, in press; Wagenmak-
ers, Grünwald, & Steyvers, 2006). The crucial difference is that for model selection,
the algorithm does not take into account the prediction errors that may occur in the
future. This is similar to how meteorologists predict the weather—future observations
are unavailable, and parameters cannot be adjusted based on prediction errors that have
yet to occur.

5. Mean square deviation (MSD) scores were used instead of G2 for two reasons. First,
exact calculation of the likelihood for data from an individual requires computing the
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probabilities for all possible choice sequences from the model for 120 trials to evaluate
the likelihood of the observed sequence. It is incorrect to simply use the product of the
probabilities for choices across trials because independence does not hold. Unfortunately,
it is too difficult to compute the exact likelihood for all sequences from the model.
Second, MSD scores are more intuitive for examining how good a model is in explaining
overall choice patterns. For instance, a MSD score of 9, 16, or 25 stands for 3%, 4%, or
5% average discrepancy of simulations and the observed data.
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Appendix A: A detailed procedure for the one-step-ahead prediction
method

1. For a given agent (participant) i, a model is provided with all parameter values (e.g., A,
W , and c).

2. In the beginning, it is assumed that Ej (t = 0) = 0 for any deck j . Therefore, Pr[D(1) =
j ] = 0.25 for each deck j (Equation 5).

3. On trial t = 1, the model is provided with Yi(t = 1), the deck the agent actually chose
and Xi(t = 1), actual payoffs experienced on the trial. Then, compute u(t) (Equations 1
or 2).
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4. The expectancies are updated by Equation 3 or 4.
5. The probability that deck j will be chosen on the next trial (Pr[D(t + 1) = j ]) is

updated accordingly by Equation 5.
6. Repeat Steps 3 through 5 up to and including t = n − 1 where n is the total number of

trials (= 120 in this study).
7. Compute log likelihood (LL):

LLModel,i =
n−1∑

t=1

4∑

j=1

ln(Pr[Dj (t + 1) = j ) · δj (t + 1)]),

where δj (t + 1) is a dummy variable, which is 1 if deck j is chosen on trial t + 1 and 0
otherwise.

8. Compute LLbaseline. Note that the baseline model is a random model.
9. Compute G2 (Equation 9).

Appendix B: The recipe for the simulation method

This is to illustrate the steps of the simulation method so that readers can more easily grasp
the difference between the one-step-ahead prediction method and the simulation method. Be
reminded that the procedure for the simulation method is quite similar to that of the one-step-
ahead prediction method, but they are different in that the simulation method does not use
observed choices of participants and makes predictions for the entire sequence of all choices.

To simulate data of an individual i generated by a model, the following steps are taken:

1. For a given agent (participant) i, the model is provided with all parameter values (e.g.,
A, W , and c).

2. In the beginning, it is assumed that Ej (t) = 0. Therefore, Pr[D(1) = j ] = 0.25 for each
deck j (Equation 5).

3. On trial t = 1, randomly generate a number from a uniform distribution that is between
0 and 1.

4. Using the number, a choice is generated on trial t = 1. The probability of choosing a
deck j on trial t = 1 is proportional to its Pr[D(1) = j ] (i.e., on Trial 1, all decks have
equal probabilities [= 0.25] of being chosen because Pr[D(1) = j ] = 0.25 for deck j ).
Note that, in contrast to the simulation method, the one-step-ahead prediction method
“knows” the actual choice on the current trial of the agent and uses the information to
do the following steps.

5. The choice yields some amount of gain or loss for a given task. The utility of the choice
is calculated by Equation 1 or 2.

6. The expectancies are updated by Equations 3 or 4.
7. The probability that deck j will be chosen on the next trial (Pr[D(t + 1) = j ]) is updated

accordingly by Equation 5.
8. Repeat Steps 3 through 7 up to and including t = n − 1 where n is the total number of

trials (= 120).
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9. Repeat Steps 2 through 8 100 times for each agent and calculate Pri[D(t) = j ], which
is the averaged probability across 100 stimulations of the agent i.

10. Repeat Steps 1 through 9 for all agents (N = 36 in this study) and compute D̄sim,j (t):

D̄sim,j (t) = 1
N

N∑

i=1

Pri[D(t) = j ].

.
11. Compute mean square deviation scores (Equation 11).


